基于FlowStar软件的栅格舵气动特性模拟
栅格舵是由外部边框和内部若干薄栅格组成的一种新型气动力面和控制面。由于其具有尺寸小、重量轻和易折叠等结构特点,以及升力特性好、铰链力矩小和压心位置随马赫数变化小等良好的气动性能,越来越受到重视和广泛应用。但是,由于栅格舵是特殊的蜂窝结构,常规的结构网格生成困难,并且栅格壁之间存在严重的波系干扰,流场结构复杂,给数值模拟带来了挑战。本文针对栅格舵流场结构复杂、网格生成和数值模拟难度大的难题,采用国家数值风洞工程(NNW)项目团队自主开发的非结构混合网格流场软件FlowStar,对栅格舵气动特性开展了数值模拟研究。首先,通过十字栅格舵全弹标模外形,验证了数值模拟方法的可靠性。然后,通过研究栅格不同形状对栅格舵气动特性的影响规律,给出了栅格舵设计时尽量采用气动性能较高和结构强度较好的菱形栅格,以及...
基于栅格舵和滑翔翼的垂直起降火箭再入返回气动特性
针对基于栅格舵和滑翔翼的两种垂直起降火箭一子级再入返回段的气动特性进行了仿真分析,得到了两种构型一子级的气动特性,分析了其流动结构特征,并研究了气动特性随马赫数(Ma)和攻角的变化规律。结果显示基于栅格舵构型的一子级轴向力系数和法向力系数随马赫数先增大后减小;基于滑翔翼构型的一子级在小攻角下轴向力系数和法向力系数在马赫数大于2后随马赫数增大而逐渐减小。通过对比可知,基于栅格舵构型一子级的静稳定性优于滑翔翼构型一子级,更适合于需要精确控制落点的重复使用任务;基于滑翔翼构型一子级的升阻比高于栅格舵构型,更适合于需要远距离滑翔的重复使用任务。
机器学习数据融合方法在火箭子级栅格舵气动特性建模应用中的比较研究
机器学习数据融合方法可帮助降低飞行器气动数据库建立的成本,加快研制进度,目前已经成为飞行器设计方法领域越来越活跃的研究方向,但其在工程复杂问题方面的应用研究并不充分。将多种常见变可信度数据融合模型应用于运载火箭子级栅格舵落区控制的工程项目,在开展部分工况的风洞试验基础上,结合少量的CFD数值模拟结果,研究相关函数和不同模型预测完整工况气动特性数据的差异性。通过对比加法标度函数修正模型、Co-Kriging模型、分层Kriging模型和多可信度神经网络模型等4种不同的数据融合模型发现高斯指数相关函数对气动建模问题的适应性更好;Co-Kriging模型对气动数据的内插表现最好;分层Kriging模型对内插的预测精度较高,外插效果不理想;多可信度神经网络模型在外插区域能获得更光滑、合理的预测结果。
局部后掠型栅格舵的气动特性研究
针对栅格舵(翼)技术的主要缺点——跨声速壅塞和阻力高的问题。以简化栅格为研究对象,采用数值分析方法开展了P型和V型局部后掠对气动特性的影响研究,并开展了不同后掠角对气动特性的影响研究。研究发现,局部后掠方式能够弱化或消除亚声速背风区的分离问题,减小跨声速区激波与边界层干扰,解决栅格舵固有的跨声速壅塞和阻力大的问题。局部后掠对栅格减阻有显著效果,尤其是高超声速段,同时能够增加单位浸润面积的法向力,从而提高栅格舵的操纵效率。
重复使用运载火箭栅格舵选型设计与工艺方案研究
栅格舵气动控制机构是重复使用运载火箭再入返回过程的重要姿控装置。针对重复使用运载火箭的需求,结合栅格舵的几何外形特征,从工作原理、几何特征、剖面形状、前后掠等方面介绍了栅格舵设计需重点考虑的关键设计参量及其影响;结合栅格舵薄壁、复杂外形的特点和耐高温等设计需求,研究了可用于栅格舵制造的相关工艺方案及其工艺流程,从设计难度、工艺难度、产品合格率、产品精度以及成本周期等方面对各类工艺方案进行了对比分析。研究表明栅格舵设计需遵循"优先气动设计需求、保证结构设计要求、结合工艺及成本约束"的设计原则,且制造工艺的精确近净成型是实现栅格舵设计制造一体化的重要基础,对CZ-8R等重复火箭的相关设计工作具有一定指导意义。
-
共1页/5条