碧波液压网 欢迎你,游客。 登录 注册

一种结合域自适应的图像语义分割算法

作者: 毛威 高宏力 来源:机械设计与制造 日期: 2024-08-20 人气:141
一种结合域自适应的图像语义分割算法
语义分割为图像分配像素级稠密标签,对场景理解具有重要作用,是视觉研究核心任务之一,涉及自动驾驶、医学成像等实际应用。现有基于深度神经网络的图像语义分割方法的训练需要大量标记数据,这些数据的收集和标记成本高昂,这很大程度上限制了此类方法的实际应用。为解决此问题,这里使用成本较低的计算机生成并标记的逼真的合成数据训练深度神经网络。但真实图像与合成图像在分布域上存在的差异会降低模型性能,因此这里使用一种对抗学习方法来实现域的自适应,以解决上述问题。又因为语义分割的结构化输出描述了源域与目标域的空间相似性,所以这里选择在语义分割的输出空间上实现域自适应方法。在此基础上,这里又于不同级别的空间构建多级域自适应网络以提升模型性能。

不同工况及类别下热力系统故障诊断的多源域自适应方法

作者: 王晓霞 张晓萱 来源:电力科学与工程 日期: 2022-04-02 人气:140
不同工况及类别下热力系统故障诊断的多源域自适应方法
针对不同负荷工况下,热工参数数据分布差异大且故障类别不一致的问题,提出了一种基于多源样本加权域对抗网络的热力系统故障诊断方法。首先,构建领域共享的一维卷积神经网络以提取多个源域和目标域的深度判别特征;其次,引入加权机制和域一致性损失度量样本,以降低仅存在于源域的故障类别的负迁移影响;然后,通过多域判别器的对抗学习实现每对源域和目标域的特征差异对齐;最后,构建多分类器对齐模块以提高预测的一致性,从而实现多源域不同工况下热力系统故障的准确诊断。借助某600MW超临界机组全范围仿真系统进行故障仿真实验,结果验证了所提方法的鲁棒性和优越性。
    共1页/2条