基于GABP神经网络的液压互联悬架建模研究
液压互联悬架(hydraulically interconnected suspension,HIS)是一种非线性系统,运用机理分析法建模存在建模精度和速度不可兼得的缺点。为解决上述矛盾,提出了一种基于遗传算法(genetic algorithm,GA)优化的反向传播(back propagation,BP)神经网络对HIS系统进行建模的方法。首先,通过Simulink建立的液压互联悬架模型仿真获取网络的训练数据。其次,使用遗传算法优化BP神经网络的初始权值和阈值;然后,两种建模方法对比验证GABP建模方法优点;最后,通过液压互联悬架台架实验获取实验数据,与神经网络训练结果进行比较分析。结果表明:在垂向模态下,低、中、高3种频率下相对误差百分数分别为4.12%、2.27%、1.51%;在侧倾模态下,低、中、高3种频率下相对误差百分数分别为7.64%、4.07%、4.35%。与机理建模法相比,GABP建模方法兼具较好的建模精度和速度。
飞机液压系统故障诊断
为有效诊断飞机液压系统故障,根据液压系统压力信号采用了熵权ABC-BP神经网络的故障诊断模型。模型先提取飞机液压系统压力信号的特征值,根据熵权法计算特征值信息熵,选取熵权值较大的作为神经网络的输入,同时利用人工蜂群优化BP神经网络,将BP神经网络的误差函数作为人工蜂群的适应度,选择适应度最优的个体参数作为神经网络的权值和阈值,不仅降低模型输入维度,还提高了诊断精度。最后建立了飞机起落架收放系统仿真模型进行仿真研究,结果表明该诊断模型具有较好的故障诊断效果,为飞机液压系统故障诊断提供一种新思路.
-
共1页/2条