风力机尾缘襟翼气动特性及减振性能研究
通过风洞试验研究风力机尾缘襟翼的气动特性,分析尾缘襟翼对翼型绕流的影响,得到尾缘襟翼对翼型气动参数的调节规律。尾缘襟翼具有对高频荷载敏感,响应速度快的特点,可有效补偿风力机变桨距控制的不足。设计了风力机独立变桨距与尾缘襟翼协同控制策略,独立变桨距控制环主要用于减缓低频荷载及振动,尾缘襟翼控制环主要用于减缓高频荷载及振动,并通过风力机模拟仿真分析控制策略的作用效果。研究结果表明尾缘襟翼与独立变桨距协同控制可同时减缓叶片低频和高频的荷载及振动,降载减振控制效果良好,具有较好的工程应用前景。
风力机翼型表面凸台的粗糙度效应研究
文章选取风力机常用翼型DU91-W2-250和NACA63-425为研究对象,通过γ-Reθt转捩模型对光滑翼型和粗糙翼型进行了二维定常模拟。用矩形凸台代替实际锯齿形粗糙带验证了模拟翼型表面粗糙度效应的可行性。通过升、阻力系数的比较和流场显示,探讨了粗糙度影响翼型气动性能的内在机理。数值模拟结果表明矩形凸台可以有效地模拟翼型表面的粗糙度效应,在翼型吸力面5%弦长位置,翼型气动性能随前缘凸台高度的增加而恶化;随着凸台位置向尾缘移动,DU91-W2-250翼型的气动性能逐渐接近原始翼型,NACA63-425翼型的气动性能呈现出先恶化后改善的趋势。
风切变与塔影效应下5 MW大型风力机气动性能数值模拟研究
以NREL 5 MW大型风力机为研究对象,采用数值模拟的方法研究了风切变和塔影效应对风力机工作的影响。对均匀来流风轮模型、均匀来流整机模型、切变来流风轮模型、切变来流整机模型四种情况进行了研究。发现风切变会降低风力机平均推力和功率,降低值分别为3.2%和2.8%,塔影效应会使风力机在一个旋转周期出现3次明显压力脉冲。风切变与塔影效应共同作用使风力机平均功率降低更多。数值模拟能给出速度、压力分布等详细流场信息,为风力机的设计和安全运行提供参考。
后缘表面圆柱扰流对翼型气动性能的影响
对风力机专用的S809翼型尾缘上表面不同位置添加小圆柱的方法对后缘气流的流动状态进行控制,通过N-S方程数值模拟0°~20°攻角下翼型的气动性能变化。结果表明,在大攻角时小圆柱扰流能够推迟翼型上表面的流动分离点,改善后缘上表面的涡流结构,使得上表面气流的绕流效应减弱,增大上表面流速,减小翼型上表面压力,从而提高翼型升力、降低翼型阻力。同时,小圆柱存在最优尺寸使得对尾部涡流的控制效果最佳,气动性能达到最好。
基于壁面压力谱方法的风力机气动噪声模型
湍流边界层尾缘噪声是翼型及风力机气动噪声的主要来源。本文应用的壁面压力谱方法是基于Aimet噪声理论提出的一种翼型尾缘噪声预测模型。首先,分别采用Goody、Rozenberg、Kamruzzaman、Lee、Hu等五种不同的壁面压力谱方法,对NACA0012和NACA64-618翼型进行噪声预测,并与实验数据对比,分析了各攻角和雷诺数下壁面压力谱方法对翼型尾缘噪声预测的准确性。其次,在Lee翼型尾缘边界层噪声建模的基础上,结合风力机叶素-动量理论,创新性地提出了一种新的风力机气动噪声预测模型,并与Bonus Combi 300 kW风力机的气动噪声实验数据进行对比,噪声谱对比结果验证了当前模型的有效性。该研究可为相关风力机气动噪声研究提供一种新的预测方法。
基于风轮气动特性的风力机变桨优化控制策略研究
当风速大于额定风速时,风电机组通过控制变桨机构调整桨距角来减小风能捕获,从而使机组的输出功率保持在额定功率附近。变桨系统一般采用PI(比例积分)控制算法,但由于风轮气动转矩与风速、风轮转速、桨距角呈高次复杂非线性关系,单一控制参数的变桨控制器难以满足风电机组在额定风速以上的运行性能要求。为了解决单一变桨控制性能不足的问题,提出一种基于风轮气动特性的风力机变桨优化控制策略,该策略通过测量桨距角当前值来动态调整变桨控制器参数,可有效提升变桨系统随风动作连续性,减小由变桨控制引起的转速与功率波动,削减机组由变桨动作引起的动态载荷。
基于升力线理论的大型风力机气弹响应研究
针对风力机不断向大型化发展的趋势,导致结构柔度增加,气弹耦合特性和振动增强,研究了大型风力机高效精确的气弹响应分析方法。为了更准确模拟大型风力机气流沿叶片展向的三维流动现象,采用螺旋尾涡升力线模型代替传统叶素动量理论,建立了叶片气动载荷分析模型,进而结合风力机多体系统动力学模型,构建了机组的气弹耦合动力学方程和数值求解方法。以某10 MW风力机叶片为例,研究了稳态风况下不同风速的叶片气动性能,以及有效攻角、切向力等沿叶展方向的分布特点,并与采用修正叶素动量理论的气弹分析程序(HAWC)对比,结果表明,升力线理论无需引入经验修正模型即能获得叶素动量理论经修正后的分析精度。最后,通过非稳态风况下风力机的气弹响应分析,证明本文方法对大型风力机气弹耦合分析的有效性和准确性。
基于致动线方法的5 MW海上风力机气动弹性分析
随着风力机功率的不断增大以及新型复合材料的应用,叶片的柔性和几何非线性变形成为风力机设计中不可忽略的因素,结构和气动弹性的分析也随之变得更加复杂。然而,风能行业中传统的叶片分析方法无法准确预测现代复杂叶片的气动弹性特性,从而导致风力机性能预测出现较大误差。本文基于柔性多体动力学,建立了一种新型双向流固耦合模型,在结合致动线方法和大涡模拟的基础上,考虑了结构和气动弹性对风力机性能的影响,可用于动态结构载荷预测及流固耦合分析。对5 MW基准风力机进行建模,验证了计算模型的准确性,并讨论了叶片的瞬时结构响应,分析了叶片变形对风力机功率、尾迹的影响。研究结果表明,叶片的柔性在风力机气动弹性设计中不可忽略,同时本文模型可以准确捕捉风力机的尾迹结构(包括叶尖涡和叶根涡),更适用于现代兆瓦级复合材...
降雨对风力机翼型气动性能的影响
以NACA0012翼型为研究对象,采用拉格朗日离散相模型,研究在不同浓度雨滴下翼型气动性能的影响。研究发现在降雨环境下,翼型表面会形成一定厚度的液膜,液膜的形成影响翼型表面的光洁度,引起边界层的提前转捩,造成翼型升力减小,阻力增大;翼型表面液膜随着计算时间的推移,翼型的压力面,主要是由于雨滴直接与翼型壁面发生碰撞而形成;翼型的吸力面,主要是由翼型前缘形成液膜后,再逐渐向尾缘流动而形成;当雨滴的浓度增大时,翼型表面形成液膜高度的波动更大,对于其升阻力的影响也将增大。
自由涡尾迹方法中涡核尺寸对风力机气动计算的影响
涡核模型中的涡核尺寸对自由涡尾迹(free vortex wake, FVW)方法准确预估风力机气动特性至关重要,涡核尺寸包括初始涡核半径和由于耗散效应涡核半径在尾迹中的增长. FVW方法中涡线控制方程离散采用三步三阶预估校正格式,涡核模型采用经典Lamb-Oseen模型,并考虑了涡耗散效应和拉伸效应.首先,通过气动载荷和叶尖涡涡量平均值的分析得到初始涡核半径的取值范围;然后,根据叶尖涡耗散特性的分析,确定体现涡黏性耗散效应涡核半径增长的经验常数的取值;最后,分析了涡核尺寸对叶尖涡结构的影响,进一步验证初始涡核半径和涡黏性耗散经验常数的取值对风力机气动计算的影响.结果表明:当初始涡核半径大于50%弦长时,FVW方法收敛稳定且能准确预估风轮气动载荷;综合风轮气动载荷和叶尖涡耗散特性,初始涡核半径取60%到70%弦长为宜,且对应的涡黏性耗散经验常数取...