薄板弯曲分析的多边形流形单元
一般的数值流形方法均采用三角形、四边形单元进行计算。对于工程中的有些实际问题,多边形单元能更好的适应复杂计算域形状。为此,研究了采用多边形流形单元进行数值计算的方法。采用任意几何区域的Delaunay三角网格构造出新的凸多边形网格,并以此单元作为计算的流形单元。采用改进的Wachspress插值函数作为多边形流形单元的权函数。为说明该方法的有效性,将该流形方法应用于薄板弯曲计算,推导出用于薄板弯曲分析的流形格式和单元矩阵。计算结果表明:较一般有限元法,计算精度和收敛速度有很大提高。
弹性薄板弯曲问题的双互易杂交边界点法
基于一种板的修正变分泛函,将杂交边界点法与双互易法结合,用于薄板弯曲问题的分析。该方法将问题的解分为齐次方程的通解和非齐次的特解两部分,特解采用径向基函数插值得到,而通解则使用杂交边界点法求解。在杂交边界点法用于求解通解的列式过程中,边界变量采用移动最小二乘近似,域内变量则采用基本解插值。与有限元法相比,该方法仅需要边界上离散点的信息,无论插值还是积分都不需要网格,域内点仅用来插值非齐次项,因而仍是一种纯边界类型的无网格方法。数值算例表明,本文方法能以很少的计算自由度获得与其它方法同样的计算精度,且具有前后处理简单、收敛速度快等优点,适合于求解工程中各种薄板的弯曲问题。
矩形小孔对薄板弯曲应力集中的影响
对于内含矩形小孔的弹性薄板的应力集中问题,传统的解决办法是运用数值计算方法或者保角变换并得到数值解.基于弹性理论和有限元方法,针对矩形薄板的特性建立了具有循环周期性的控制方程,并应用U变换技术,得到具有3个自由度的位移方程,给出级数形式的位移解析解,矩形孔的长宽比是解的一个参数;然后,可以很方便地由结点位移讨论薄板弯曲的内力和应力集中系数.文中给出一个具体的算例,当薄板受到单向弯曲荷载作用时,利用四结点12自由度薄板弯曲非协调单元得到内力的解,并且改变矩形孔的长宽比,讨论了矩形孔形状对于应力集中系数的影响.研究结果表明:当长宽比等于1时,应力集中系数为1.591 1,并且随着长宽比的增大而迅速增大,随着长宽比的减小而平缓下降.
-
共1页/3条