发动机进气噪声气动声源特性分析
目前主要通过进气空滤器对发动机进气系统的气动噪声进行降噪,而通过对气动声源的研究进行源头降噪具有一定实际意义。但由于进气道-气门-燃烧室等的特殊性,难以测量声源的声学状况,故以进气道-气门-燃烧室为研究对象,通过仿真研究气动声源位置分布。结果表明进气门密封锥面处偶极子声源强度较大;两进气道的气流相遇处以及靠近壁面处四极子声源强度较大。在原有结构中改变进气门过渡圆角半径R对气动噪声源进行控制,R增大为11 mm时,偶极子和四极子声源声压级(Sound Pressure Level,SPL)峰值分别降低7 dB和8 dB,噪声主要集中在中低频区域,频率大于2 000 Hz后SPL衰减迅速。增大R可以降低噪声源处的声能量,从而降低对外表现的噪声。
高速列车转向架区域气动噪声源的特征识别
为了创建高速列车气动噪声源识别方法,以气动声学基本波动方程为基础,将高速列车气动声源等效为无数微球形声源组成,利用声辐射和流场物理量之间的关系,并结合高速列车气动数值仿真技术,建立了高速列车偶极子声源和四极子声源的识别方法,从全新的角度对某高速列车头车气动噪声源进行识别;基于涡声方程声源项特征,进一步揭示了偶极子声源和流场流动的关系.研究结果明确了高速列车主要偶极子和四极子声源的强弱和分布特征,表明了气流的直接撞击和分离现象是产生声源的主要原因,头车及转向架区域气动噪声源以偶极子声源为主;偶极子声源强度较大位置出现在边沿较为尖锐的地方,在绝大多数情况下流体经过时涡量急剧增加,成为其形成强声源的主要原因.
基于圆柱绕流的气动声源识别方法
以气流流经固体壁面产生的气动声源为研究对象,以力点源对应的偶极子气动声源声波动方程的声压解为基础,利用流场中声源辐射声压和脉动力、脉动力和压力梯度的关系,建立偶极子气动声源辐射声压与流场压力梯度的关系式;利用两偶极子声源可组成一四极子声源的概念,建立四极子气动声源辐射声压与流场脉动速度的关系式。最后,以圆柱绕流为研究对象,采用上述两关系式并结合数值仿真计算方法,得到圆柱绕流的偶极子和四极子气动声源大小和分布特征。结果表明偶极子气动声源向远场的声辐射声压由■▽p/■t决定,四极子气动声源向远场的声辐射声压由■2u2/■t2决定。
基于关联速度的FW-H积分四极子声源修正模型
FW-H积分中的四极子声源项常在远场噪声的计算中引起虚假声源问题。这类虚假声源是由于计算四极子声源的积分域不能包含全部声源区域,Lighthill应力张量穿过四极子声源的积分域边界引起的。本文在频域方法的框架下改进了四极子声源项的修正模型,用于修正Lighthill应力张量穿过积分域边界引起的误差。该模型基于泰勒冻结流假设,利用关联函数计算Lighthill应力张量的对流速度。与常用的均匀来流对流速度相比,本文提出的模型考虑了对流速度的空间非均匀性,改善了非均匀流动区域FW-H积分面对远场噪声的影响。二维对流涡和圆柱绕流的远场噪声验证了本文模型的有效性。
-
共1页/4条