稳态温度场对转子系统振动特性的影响
热弯曲是工程实际中常见的转子故障.采用有限元法,利用热-结构-动力学耦合理论,探讨了稳态温度场对某汽轮机转子系统的振动特性的影响.对比研究了不平衡响应、热弯曲响应以及不平衡和热弯曲耦合响应,讨论了稳态温度场、转子系统的工作转速等因素对转子-轴承系统热振动特性的影响,找出了影响其热振动特性的敏感参数.结果表明,由于热弯曲的产生,转子系统的刚度重新分布,导致了其热振动的一阶临界转速显著降低,同时改变了振动的平衡位置,使转子系统围绕新的平衡位置做周期性运动.计算结果为转子-轴承系统的设计和热弯曲故障诊断提供了理论依据.
浮式风机气动-水动-气弹性耦合响应数值模拟
随着海上风电产业的快速发展,大型浮式风机逐渐从概念设计走向工程应用,但仍面临较大的挑战。一方面,在风、浪等环境载荷的作用下,浮式风机的气动载荷和水动力响应之间存在明显的相互干扰作用;另一方面,风力机大型化使得叶片细、长、薄的特点愈发突出,叶片柔性变形十分显著,这会影响到浮式风机的耦合性能。基于两相流CFD求解器naoe⁃FOAM⁃SJTU,结合弹性致动线模型和等效梁理论,建立了浮式风机气动—水动—气弹性耦合响应计算模型,并对规则波和剪切风作用下Spar型浮式风机的气动—水动—气弹性耦合响应进行了数值模拟分析。结果表明,风力机气动载荷使得叶片挥舞变形十分显著,而叶片的扭转变形会明显降低风力机的气动载荷。此外,风力机气动载荷会增大浮式平台的纵荡位移和纵摇角,同时,浮式平台运动响应会导致风力机气动载荷产生大幅...
空气舵气动力-脉动压力-结构耦合响应分析
气动力、脉动压力、结构振动相互作用,组成复杂的多场耦合系统,给动力学分析带来极大的挑战。文章基于PCL和DMAP语言自主研发了气动力–脉动压力–结构耦合响应分析软件,以复合材料空气舵为研究对象,建立其有限元模型,并开展模态分析;进而,建立基于Van Dyke修正活塞理论的气动模型,基于模态法分析了气动力–脉动压力–结构三者耦合的空气舵响应,并与不考虑气动力效应的非耦合结构响应进行对比,探究了气动力耦合效应对空气舵响应的影响规律。结果表明,气动弹性效应能使得空气舵振动响应从随机振动变为发散极限环振荡形式的高阶运动,显著改变脉动压力响应谱。可以预测,结构声疲劳分析中必须考虑气动弹性效应。
-
共1页/3条