基于在线学习的柔性关节机器人自适应神经轨迹跟踪控制
针对传统机器人关节控制算法跟踪精度低、鲁棒性差的缺点,基于自适应神经网络提出了一种机器人关节轨迹跟踪算法。算法由自适应神经网络和在线学习反馈模块组成,自适应神经网络将自适应函数同神经网络结合,提高了神经网络训练准确性。同时通过在线学习反馈模块实时更新非线性基函数的内部权值,以进一步减小跟踪误差。再采用时间尺度分离减少了神经网络和在线学习的耦合误差,使得内部权重低于输出层权重的更新速度,从而使模型结构能够迅速适应未知的动态变化与干扰。仿真实验表明,所提算法与对比算法相比误差值要低约60%,说明了该算法可以提高机器人轨迹跟踪精度,降低误差。
自动与人工观测数据的差异及主要分析
自动与人工两种观测体制所获得的气象数据存在差异,这种差异的产生是由多种原因造成的.本文主要从理论与实践两个方面进行论证.
-
共1页/2条