基于FLUENT汽车散热器温度场匹配性分析
良好的散热系统是发动机工作的重要保证,良好的匹配性是整车高效工作的保证。针对车辆发动机散热器温度场匹配性进行分析,对发动机冷却风量、散热器散热量及水泵的选择计算进行分析,对影响冷却系的重要因素冷却风扇和散热器的选取进行分析,在此基础上对冷却系统的匹配性进行分析,采用FLUENT仿真和冷却系统试验台相结合的方法对获得的最佳工况点进行检验,结果可知通过风扇入口静压、散热器内部静压损失曲线匹配,获得冷却系统的最佳工况点风量和压强分别为16.70m3/s和761.48Pa;在最佳工况点,冷却水由入口处的95℃下降到出水管处的大约平均78℃,发动机内冷却水的最低温度为79.4℃,可以满足发动机要求;试验测试结果表明,达到稳定工况时,出口温度恒定在78.4℃左右,试验与仿真结果基本吻合,表明匹配性设计符合要求,误差小于1%,为同类设计提供参考...
连杆结构拓扑优化设计及其对发动机系统稳定性的影响
建立起某车型的发动机曲柄连杆机构系统。首先基于ABAQUS/Optimization模块,对连杆结构进行拓扑优化设计,在满足结构刚度和强度的前提下达到结构轻量化的目的,后采用隐式动力学分析算法,对优化前后的活塞-连杆-曲柄系统进行动力学仿真分析,对比优化前后系统的振动特性。结果表明,在以得到最小应变能为目标的条件下,通过移除连杆杆柄四周的部分多余材料,可使连杆系统的应变能降低为868.9J,结构质量也由初始的0.793kg降低为0.585kg,实现减重26.2%的最终效果。采用隐式动力学分析算法,计算结构优化前后的活塞-连杆-曲柄系统运动特性,结果表明,通过对连杆进行结构轻量化设计,可以降低系统质量,且不会恶化系统响应行为,相反地,它对系统的切向振动起到一定的改善作用。通过优化设计可以避免连杆出现大范围的应力集中,虽然一定程度上增加了最大应力...
筒式液压减振器AMESim建模与仿真
分析了筒式液压减振器的工作原理和阀系特性,根据流体力学缝隙流动、管嘴流动计算理论及流体连续方程,推导了油液流动数学公式。应用AMESim建立了减振器上腔、下腔、补偿腔及各种阀系的模型,仿真得到了减振器示功图和速度特性,按照减振器台架试验标准QC/T545进行了试验。仿真结果和试验数据吻合良好,表明用AMESim对筒式液压减振器建立的仿真模型正确可靠,符合实际要求,准确地描述了阻尼力随行程变化的规律,仿真模型可用于指导减振器的设计以及进行性能预测。
车辆减振器Kriging模型的结构参数寻优及试验验证
为对某款液压筒式减振器进行结构参数的优化,建立了压缩、复原行程的数学模型,并进行台架试验,以活塞复原孔直径、复原节流阀片缺口高度、复原阀弹簧预紧力3个结构参数为优化变量,复原行程最大阻尼力为优化目标,仿真分析了开阀后优化变量与优化目标间的关系,建立了Kriging近似模型并利用多岛遗传算法对3个结构参数进行寻优。将优化前后的结构参数进行仿真分析和试验验证,与预期值相对误差分别为0.446%和1.82%,表明该近似模型可靠且减振器能量耗散性能得到了提升,为其他结构参数的分析设计及性能的优化提供了一种方法。
-
共1页/4条