碧波液压网 欢迎你,游客。 登录 注册

基于改进多元多尺度色散熵的齿轮箱多通道振动信号故障诊断

作者: 周付明 申金星 杨小强 刘武强 刘小林 来源:机械传动 日期: 2024-06-25 人气:85
基于改进多元多尺度色散熵的齿轮箱多通道振动信号故障诊断
齿轮箱发生故障时,其振动信号具有不平稳和非线性等特征,而常用的齿轮箱故障诊断方法大多是建立在单通道振动信号分析基础上,容易造成故障信息丢失,故而在工业生产中实用性受限。为了克服此缺陷,将多元多尺度色散熵引入到齿轮箱故障诊断当中,并改进其粗粒化方式,提出了改进多元多尺度色散熵,用以提取齿轮箱多通道振动信号的故障信息。在此基础上,提出一种基于集合经验模态分解,改进多元多尺度色散熵和遗传算法优化支持向量机的齿轮箱故障诊断方法。通过实验数据分析,并与多元多尺度样本熵、多元多尺度模糊熵等现有方法相比较,证明该方法具有更高的准确率和稳定性,且在处理短时间序列时具有明显优势。

采用滑动平均多元多尺度色散熵的液压泵故障诊断方法

作者: 宫建成 韩涛 杨小强 刘武强 周付明 来源:陆军工程大学学报 日期: 2021-06-06 人气:183
采用滑动平均多元多尺度色散熵的液压泵故障诊断方法
为了提高色散熵的信息提取能力,在兼顾计算效率和效果的前提下,引入多维嵌入重构理论,借鉴滑动平均的思想,更新了传统多尺度算法的粗粒化方式,提出了滑动平均多元多尺度色散熵(moving average multivariate multiscale dispersion entropy,MA_mvMDE)用以提取液压泵故障特征。首先,利用均匀相位经验模态分解(uniform phase empirical mode decomposition,UPEMD)将振动信号分解为多个本征模态分量(intrinsic mode functions,IMF),再采用相关系数法筛选敏感分量,将包含大量故障信息的模态分量作为多通道数据计算其MA_mvMDE值来提取故障特征。接着,采用MCFS方法选择故障敏感特征实现降维。最后,通过随机森林分类器完成故障识别。采用液压泵故障振动数据验证了该方法能够准确诊断不同类型和不同程度的故障。
    共1页/2条