基于多层降噪处理的轴承故障特征提取方法
针对滚动轴承振动信号的故障信息难以准确获取问题,提出一种新的基于多层降噪处理的轴承故障特征提取方法。所提方法首先依据小波包变换原理处理原始轴承信号,消除噪声干扰;变换后的振动信号用经验模态分解方法处理可得若干个IMF分量,计算所得分量与变换所得信号间的互相关系数,并依据相关系数准则筛选有用分量完成振动信号的重构;再通过自相关方法剔除重构信号中的混叠干扰信号,实现振动信号的多层降噪;最后对去噪后的重构信号解调处理,获取信号包络谱图并分析,得到所需故障特征。试验结果表明该方法能够有效地消除原始信号中的干扰和噪声,分离出清晰的故障振动信号并获取有用的故障特征。
基于SVD-CEEMDAN和KLD的轴承故障分析
针对滚动轴承信号去噪及故障特征提取问题,提出一种基于SVD-CEEMDAN和KLD的滚动轴承故障诊断方法。该方法通过奇异值分解(SVD)对原始信号进行初步去噪,再利用完备集合经验模态分解(CEEMDAN)对去噪后的非平稳振动信号进行自适应分解,得到若干本征模态函数(IMF);然后通过KL散度法(KLD)筛选有效本征模态函数(IMF)重构,再对其进行自相关去噪;最后利用包络谱分析处理去噪信号,提取故障特征频率。通过对轴承实测信号进行分析,该方法可有效抑制噪声,并能清晰地得
-
共1页/2条