基于BP神经网络的机器人力矩补偿研究
通过对关节驱动助力减小机器人拖动示教的拖拽力,是提高拖动示教灵活性的有效方法。而在拖动示教过程中准确、实时地计算出机器人各关节补偿力矩,是实现拖拽助力的关键问题。针对拖动示教喷涂机器人进行动力学建模,分析关节力矩补偿值与惯性力、重力等因素之间的关系,提出一种基于无监督学习的BP神经网络力矩控制算法对机器人直接示教进行在线力矩补偿。在六自由度喷涂机器人上进行实验验证。结果表明:该力矩补偿算法的计算效率提升70%,平
-
共1页/1条