碧波液压网 欢迎你,游客。 登录 注册

基于卷积神经网络和离散小波变换的滚动轴承故障诊断

作者: 陈仁祥 黄鑫 杨黎霞 汤宝平 余腾伟 周君 来源:振动工程学报 日期: 2021-06-01 人气:82
基于卷积神经网络和离散小波变换的滚动轴承故障诊断
针对滚动轴承故障诊断时频特征自适应提取与智能诊断问题,提出了一种基于卷积神经网络(Convolution Neural Network,CNN)和离散小波变换(Discrete Wavelet Transform,DWT)的滚动轴承故障诊断方法。首先应用离散小波变换将信号时频特征充分展现,构造出时频矩阵;然后再利用卷积神经网络的多层特征提取网络对输入信号进行分级表达,将时频矩阵低层信号特征逐层变换形成抽象的深层特征,以获取原信号时频信息的分布式特征表达。最后在特征输出层后端添加softmax多分类器,利用反向传播(Backpropagation,BP)逐层微调结构参数,建立特征空间到故障空间的映射以生成合适的分类器,从而实现滚动轴承故障诊断。通过对不同故障类型、不同损伤程度以及不同工况下的滚动轴承进行故障诊断实验,结果证明了所提方法的可行性与有效性,并具有较好的泛化能力和稳健性。
    共1页/1条