S能量分布特征和SVM在齿轮故障诊断中的应用
准确提取振动信号特征,是齿轮故障诊断的关键问题。为此,提出了一种基于S变换能量分布特征和SVM的故障诊断方法。首先对齿轮故障信号进行S变换得到时频矩阵,然后利用该矩阵构建能量分布特征。最后建立SVM齿轮故障识别模型,将对应的特征样本输入到模型中进行训练和识别,以达到对齿轮故障的准确分类。将所提出的方法应用于齿轮故障检测和诊断。通过实际故障实验数据对所提方法进行了验证。结果表明,该方法能够有效地降低噪声的影响,能够准确地识别齿轮故障,具有较高的准确率和使用价值。
基于轴心轨迹的转子升速过程故障特征提取方法研究
针对升速过程中转子故障诊断所面临的复杂分析问题,在传统轴心轨迹的基础上提出瞬态倍频轴心轨迹的分析方法。利用Vold-Kalman阶比跟踪方法提取出各故障特征频率;然后将特征频率进行重构,合成随转速变化的瞬态倍频轴心轨迹;利用几何矩方法提取瞬态倍频轴心轨迹的故障特征,并将几何矩特征集进行MDS降维。经实验验证,该方法在转子升速过程中的故障特征提取及诊断方面取得了良好的效果。
-
共1页/2条