碧波液压网 欢迎你,游客。 登录 注册

OMCKD结合自互补Top-Hat变换的电机轴承故障诊断方法

作者: 宋慧欣 王冬梅 车一鸣 来源:组合机床与自动化加工技术 日期: 2021-01-07 人气:201
针对电机轴承微弱故障识别困难这一问题,提出了优化最大相关峭度解卷积(optimized maximum correlated kurtosis deconvolution,OMCKD)结合自互补Top-Hat变换的诊断方法。为解决MCKD关键影响参数难以设置的问题,提出利用人工鱼群算法(artificial fish swarm algorithm,AFSA)并行搜索MCKD参数全局最优解,实现关键影响参数的自动优化调节。首先利用OMCKD方法对原始信号进行预处理,提取被噪声所掩盖的微弱特征信息,继而对解卷积信号做自互补Top-Hat变换处理,进一步抑制背景噪声干扰,强化周期性冲击特征。最后对所得结果做频谱分析,并通过分析谱图中幅值突出的频率成分判定轴承的状态。两组实测信号分析结果表明所述方法可有效用于电机轴承故障诊断,具有一定可靠性及优越性。

基于多尺度基本熵和参数优化KELM的电机轴承故障诊断

作者: 王冬梅 车一鸣 宋慧欣 来源:组合机床与自动化加工技术 日期: 2020-12-17 人气:173
针对信号特征提取中多尺度样本熵(MSE)与多尺度排列熵(MPE)算法计算效率差的问题,提出一种基于多尺度基本熵(MBSE)和参数优化核极限学习机(KELM)的电机轴承诊断新方法。该方法先通过MBSE来提取所拾取滚动轴承振动信号的特征信息,同时对比分析了多尺度基本熵、多尺度样本熵与多尺度排列熵的计算效率。最后利用KELM分类器对滚动轴承的不同状态进行判定,并通过人工鱼群算法(AFSA)对KELM的关键影响参数进行寻优。实验结果表明所述方法能够对滚动轴承的运行状态进行有效识别。
    共1页/2条