机器人减速器传动粗糙表面接触参数研究
针对机器人减速器传动界面广泛存在的粗糙表面接触特性开展相关研究。以GW接触模型为基础,考虑粗糙峰接触过程中相互作用的影响,对它进行修正得到新的模型。采用修正模型计算粗糙表面接触载荷并推导出接触刚度,然后与原始GW接触模型的计算结果进行对比。在进一步的研究中,讨论了不同表面粗糙度与不同接触表面材料对接触载荷与接触刚度的影响。结果表明:粗糙表面接触参数不仅受粗糙峰相互作用的影响,还与粗糙度与接触表面材料有密切的联系
微观加工形貌对三维线接触Stribeck曲线与疲劳寿命的影响
齿轮的传递效率和寿命与齿面成形方式紧密相关,针对圆柱齿轮常见的剃削、磨削、珩磨、抛光四种加工方式,采用三维线接触混合润滑分析模型,结合Zaretsky接触疲劳寿命计算方法,系统分析了高速到极低速工况下,界面摩擦系数对接触疲劳寿命的影响,以及不同微观加工形貌作用下三维线接触Stribeck曲线与疲劳寿命的变化规律.研究表明:全膜润滑状态下,界面摩擦对疲劳寿命的影响较小,各类组合表面的摩擦系数基本一致,但各组合表面疲劳寿命差异较大,抛光组合表面的疲劳寿命最优;在混合润滑状态下,各类组合表面的摩擦系数变化差异明显,而相对疲劳寿命差异明显减小,其中,磨削组合表面摩擦系数较大,抛光组合表面摩擦系数最小;值得注意的是,研究表明界面摩擦系数和疲劳寿命不是表面粗糙度的简单函数,不随界面粗糙度值的大小变化而单调变化.
微沟槽形貌对水润滑轴承混合润滑特性影响的研究
建立了计入轴承内表面微沟槽形貌的水润滑轴承混合润滑(Mixed-EHDL)数值计算模型,着重研究了不同运行工况下,半椭圆形、矩形、等腰三角形、左三角形、右三角形等多种微沟槽形貌对水润滑轴承混合润滑特性的影响.研究表明在所有微沟槽形貌中,混合润滑性能与承载性能优劣排序依次为右三角形、等腰三角形、左三角形、半椭圆形、矩形;在弹流润滑阶段,微沟槽形貌对水润滑轴承摩擦系数几乎无影响,而在混合润滑阶段,不同微沟槽形貌下接触载荷以及摩擦系数之间的差异随转速的增加呈现出先增大后减小最后趋于统一的规律性;在承载区,由于沟槽内水膜增压能力以及抽吸作用的不同引起了水润滑轴承混合润滑性能的差异,其中右三角形表现最优,而矩形最差.
弧齿锥齿轮摩擦系数与啮合效率研究
综合考虑接触几何、接触载荷、速度矢量、卷吸夹角、表面粗糙度、流变特性等因素,研究了不同啮合位置以及不同转速下弧齿锥齿轮的摩擦系数与啮合效率.结果表明:一对啮合副从啮入到啮出过程中,摩擦系数先增大后减小,与相对滑动速度变化趋势相反;一个啮合周期内,弧齿锥齿轮啮合效率与摩擦系数变化规律相似,但在啮出点附近,由于下一对啮合副进入啮合,啮合效率开始增大;随着转速增大,摩擦系数减小,啮合效率增大.采用文献中已有摩擦系数计算方法分析了弧齿锥齿轮摩擦系数和啮合效率,并与本文中的计算结果进行对比.结果表明:在节点啮合时,采用经验公式与简化算法的摩擦系数预测结果误差较大,而啮合效率计算误差较小;混合润滑和全膜润滑状态下,基于摩擦系数简化算法的弧齿锥齿轮效率计算结果与本文中的计算结果相近.
汽车变速器齿轮传动系统动态特性研究及优化
针对汽车在运行过程中汽车变速器的振动问题,以汽车变速器三挡为研究对象,通过MASTA软件对其进行载荷谱分析,再以提高齿轮的承载能力和尺寸的比值为目标,对三挡啮合齿轮进行优化设计,得到新的模数与螺旋角.综合考虑动态啮合刚度、齿侧间隙、轴承游隙、传递误差的影响建立斜齿轮弯扭耦合的6自由度非线性动力学模型并对传动系统的振动特性进行分析.根据优化前后的振动特性对比,提出了将振动时域信号转化为频域信号进行对比的方法,使得结果更加直观.通过快速傅里叶变换将振动时域信号转化为频域信号.结果表明,优化后齿轮的振动特性有明显的改善,尤其是z向振动减小达到1/4左右.本研究为汽车变速器的振动特性优化提供一定的理论依据.
混合润滑下短齿啮合对行星齿轮接触疲劳的影响
少齿差行星齿轮为避免齿顶干涉,通常会减小齿高,这可能会导致齿面实际接触宽度小于理论赫兹接触宽度,降低齿面接触强度.鉴于此,为研究少齿差行星传动短齿制对齿轮接触疲劳的影响,综合考虑了轮齿接触宽度、楔形间隙、齿宽有限长和齿面粗糙度等因素,建立少齿差行星齿轮短齿啮合的混合润滑统一方程,求解出啮合齿对间的压力分布、摩擦系数和轮齿接触区次表面应力分布,根据Zaretsky接触疲劳寿命计算模型,对不同工况下不同啮合位置的轮齿接触疲劳寿命进行预测.结果表明:接触宽度在少齿差行星齿轮的疲劳寿命预测中不容忽视,短齿啮合模型下的楔形间隙对啮入和啮出过程的疲劳寿命有不同影响.
-
共1页/6条