基于变分模态分解和Wigner-Ville的单向阀早期故障诊断
针对大型往复式机械设备高压隔膜泵单向阀早期故障难以识别的问题,该文提出基于变分模态分解(variational mode decomposition,VMD)和Wigner-Ville的单向阀早期故障诊断方法。首先,利用VMD将原始振动信号分解成有限个IMF分量,基于观察中心频率法筛选富含故障信息的IMF分量;然后,利用魏格纳-维利分布(Wigner-Ville distribution,WVD)对筛选后的IMF分量计算,得到每个分量的Wigner-Ville分布;最后,将各项结果线性求和得到信号的WVD分布。经仿真与工程实验分析,该方法能较好表征出振动信号中所蕴含的单向阀早期故障特征信息,能实现高压隔膜泵单向阀早期故障诊断。
自适应随机共振和DEMD的单向阀早期故障诊断
针对高压隔膜泵单向阀的早期故障振动信号信噪比(SNR)低,故障特征提取困难的问题,本文提出一种自适应随机共振和微分经验模态分解(DEMD)的早期故障诊断方法。首先对原信号进行预处理,设置压缩比进行变尺度处理;然后将SNR作为自适应度函数,利用粒子群(PSO)算法优化随机共振(SR)系统参数,将优化后参数及处理后的信号输入SR系统中;最后对系统输出的信号进行DEMD算法分解,对各分量进行频谱分析,选取含特征频率的分量合成进行包络分析,以提取故障特征信息。经仿真分析与工程实验表明,该方法能够较好地提取出单向阀的早期故障特征信息。
ITD-多尺度熵和ELM的风电轴承健康状态识别
对风力发电机机组的运行状况进行实时监测,并识别其健康状态,是保证机组正常运行的关键,为此提出一种固有时间尺度分解(Intrinsic time-scale decomposition,ITD)-多尺度熵(Multiscale entropy,MSE)的振动信号分析方法,对振动信号进行预处理,提取重构信号时域特征,并结合极限学习机(Extreme learning machine,ELM)对风电轴承健康状态进行识别。首先采用ITD方法对风电轴承的振动信号进行分解,得到一系列固有旋转分量,并计算其多尺度熵值,以多尺度熵值大小为依据,选取固有旋转分量并进行信号重构。计算重构信号的均方根值、峭度值、峰值因子与峰峰值,并将其作为特征指标值,建立ELM识别模型,识别风电轴承的健康状态。风电轴承试验结果表明,本文模型可以准确识别风电轴承健康状态。
-
共1页/3条