硬质合金微槽车刀切削刃近域热力强度分析
车刀前刀面切削刃近域作为金属切削过程高温高压的集中作用区域,其热力强度对刀具切削性能有重要影响。文章以前期工作所获得的切削过程刀屑接触界面平均切削温度和平均切削力作为热载荷和机械载荷,确定出刀屑接触区域范围,合理施加约束和边界条件。将稳态热分析和静力学结构分析相关联,对车刀进行热力耦合分析,根据在热载荷和机械载荷综合作用下主切刃近域的应力分布,对该微槽车刀切刃近域热力强度进行分析评价。研究结果表明,该硬质合金微槽车刀切削刃近域的最大等效应力小于刀具材料的许用强度,即该硬质合金微槽车刀在给定切削工况下进行切削时,刀具切削刃近域强度足够,不会因为强度问题影响切削过程的正常进行。
硬质合金涂层车刀稳定温度场仿真研究
刀屑接触界面的温度分布尤其是刀具最高切削温度对刀具磨损研究至关重要,而相对稳定的温度场是获得客观可靠模拟结果的必要前提,但在切削仿真过程中稳定温度场的获取存在周期长、不稳定等难题。针对上述问题,文章基于切削仿真平台,探寻硬质合金涂层车刀切削过程刀具温度场达到相对稳态时的传热学条件。采用修正的拉格朗日算法和局部网格重划分技术对该切削过程进行有限元仿真,重点关注并揭示刀具与工件间的总传热系数和刀具与周围环境间的对流换热系数对切削仿真温度分布的影响规律,从而获得给定切削条件下的优选方案。研究发现,当刀具与工件间传热系数取为1500k W/(m2k),刀屑界面与周围环境的对流换热系数取为15k W/(m2k)时,"刀具-工件-空气"三者可迅速达到基本热平衡状态,并获得相对稳定的刀具温度场。
硬质合金切槽车刀性能分析及工艺参数优化
切槽车刀工作环境封闭,工作状况恶劣,使得刀具温度高和刀具磨损的问题尤为突出。运用数值计算方法建立了硬质合金切槽车刀车削加工钛合金环槽过程模型,基于传热学和Usui磨损理论计算车削过程中刀具最高温度和刀具磨损速率。对环槽车削过程的热力耦合计算结果进行分析,获得了刀具在切削过程中的温度及磨损速率的变化规律。建立了刀具温度和磨损速率的预测模型,运用遗传算法对预测模型进行求解,得到满足要求的工艺参数组合。结果表明,刀具温度和磨损速率与工艺参数之间关系密切。通过应用优化算法对切削工艺参数进行优化,使得目标函数值增加了30%,运用切削实验验证了优化后的工艺参数能够有效提高硬质合金切槽车刀的性能。
芯板厚度对超塑成形的影响
根据超塑成形的工艺要求,利用ANSYS/LS—DYNA有限元软件对空心风扇叶片成形过程进行数值模拟分析,以此研究不同的芯板厚度对超塑成形结果的影响。分析的结果表明:选取的三种厚度的芯板里,当厚度为0.8mm时,塑性变形最均匀,成形效果最好。
-
共1页/4条