基于NLSTFT与TSA相结合的风电齿轮箱故障诊断
针对变工况风电齿轮箱振动信号存在频谱频率模糊问题,以及传统时域同步平均方法需要键相信号及转速稳定要求。提出了一种不需要键相信号可跟踪变转速振动信号瞬时频率的时域同步平均方法。该方法通过非线性短时傅里叶变换(Non-linear short-time fourier transform,NLSTFT)获取变转速齿轮箱振动信号瞬时频率曲线,积分得到瞬时相位曲线;根据瞬时相位对原始信号进行角域重采样,获得阶次信号;最后对阶次信号进行TSA处理进行齿轮故障诊断。以某机组的齿轮箱实测数据,有效地验证了所提方法在风电齿轮箱故障诊断中的有效性及工程实用性。