超声速涡轮叶型全局气动优化设计
针对涡轮叶型全局优化设计计算时间长、样本空间大等难点提出一种可行的优化设计方法,该方法将控制叶型的17个参数作为优化变量,采用第二代多目标遗传算法进行全局自动寻优。基于此方法,搭建了涡轮叶型全局优化设计平台。利用此平台,分别采用轴向稠度固定和自由优化两种方式对超声速涡轮叶型进行了优化设计。数值计算结果表明,两组优化设计叶型在设计工况下总压损失系数比参考叶型分别低19.5%和10.0%,流道中的激波强度更弱,且在变工况条件下都具有较好的气动性能。深入分析流场与激波结构后发现,外尾激波相比于内尾激波对总损失的影响更大,通过减小气流膨胀转折角或内尾激波气流转折角能够有效削弱外尾激波强度。
基于源项和贴体网格CFD的翼型冠涡轮叶栅气动性能预测对比
翼型冠是控制涡轮叶片叶顶泄漏流动的一种叶顶结构。在翼型冠涡轮叶栅气动性能的数值模拟中,为降低计算成本,本文采用了一种基于源项的CFD技术。该方法无需构建翼型冠真实几何结构和生成贴体网格,只需在叶顶附近构建源项域并采用均匀网格进行离散,随后在网格点上定义材料多孔度,并在控制方程中引入与多孔度有关的源项函数。采用基于源项的数值模拟方法,首先计算了某一翼型冠涡轮平面叶栅的气动流场,并分析均匀网格尺寸和湍流模型方程源项对计算结果的影响。然后,在翼型冠源项基础上,分别增加了密封齿和叶顶喷气源项,以研究源项法在有密封齿和有叶顶喷气翼型冠叶栅性能计算中的准确性。通过与基于贴体网格(即真实结构)的数值模拟结果相对比,发现源项法计算能够较准确地评估翼型冠、密封齿和叶顶喷气对涡轮叶栅气动性能的影响。...
-
共1页/2条