SiC单晶加工参数优化及表面粗糙度预测
因独特的共价键晶体结构,SiC单晶具有较高的硬度和脆性,是典型的难加工材料。以横向超声激励线锯的方法对SiC单晶进行切割,采用正交实验设计,并引入灰色关联分析法研究切割过程中锯切力、晶片表面粗糙度等多目标与主要加工参数之间的影响关系,以及获得线锯加工最优参数组合,即工件进给速度0.025mm/min、超声振幅1.8μm、线锯速度1.6m/s、工件转速16r/min为最优加工参数组合,并通过实验进行验证。采用果蝇优化算法优化灰色神经网络模型(FOA-GMNN)对SiC单晶片的表面粗糙度Ra进行预测,结果表明FOA-GMNN模型收敛速度快,鲁棒性好,预测精度高,预测值与实验值的平均相对误差为2.09%。
-
共1页/1条