基于VMD-HT的滚动轴承故障诊断
针对滚动轴承早期故障特征难以提取的问题,提出一种结合变分模态分解(VMD)和希尔伯特变换(HT)的特征提取方法,并且应用BP神经网络(BPNN)对特征进行分类,最后以实验验证了其可行性。首先,采用VMD对实测滚动轴承振动信号进行分解,并用HT变换计算分解得到的本征模态分量(IMF)的瞬时能量矩阵,然后,通过奇异值分解(SVD)对瞬时能量矩阵降维进行特征提取,最后将提取得到的特征向量输入训练好的BPNN中进行滚动轴承故障诊断。实验结果表明,此方法可以准确提取滚动轴承在不同故障状态时的特征,并且对滚动轴承故障诊断的准确率较高。
-
共1页/1条