改进RRT算法的无人驾驶车辆路径规划研究
针对基础快速扩展随机树(Rapidly-exploring Random Trees,RRT)应用于无人驾驶车辆路径规划时缺乏导向性,收敛速度慢,路径平滑性差及规划结果并非最优解等问题,提出了一种基于RRT的路径规划改进算法。首先,设计了启发式采样策略提出基于权重分配的目标指向的局部扩展方式,解决了节点盲目扩展的问题,避免了因目标偏向而出现路径陷入局部最小值的情况,并通过设置转角阈值约束节点转角范围,同时采用变步长采样策略,提高了算法局部避障能力;其次,对已得路径进行后处理提出了节点优化策略,并用B样条曲线进行路径拟合,实现了路径长度的优化并满足平滑性要求,路径末端与目标点采用Reeds-Shepp曲线连接,解决了车辆抵达目标点时的航向问题。最后利用Matlab软件,将改进算法与基础RRT及其衍生算法进行了对比分析,验证了所提算法的有效性和优越性。
-
共1页/1条