基于GAF-inceptionResNet的齿轮箱故障诊断
为了提高齿轮箱故障诊断的准确率,准确表达齿轮箱的健康状态,结合深度学习算法,提出了一种用于齿轮故障诊断的GAF-inceptionResNet模型。该模型可以直接将原始一维振动信号经过格拉姆角场变换后形成图像作为模型的输入,通过Stem-block、残差Inception、残差模块和分类层相互连接。残差Inception网络能够拓宽网络深度,提升训练时长及准确率;残差模块利用恒等映射可以大幅度降低模型的训练难度。因此,该模型可有效地挖掘信号特征之间的信息,使模型的特征学习能力增强,从而提高准确率,精准确定故障。实验结果表明,该模型能够达到99.59%的故障诊断精度,有效实现齿轮箱良好的故障识别与分类。
-
共1页/1条