基于小波分解与深度学习的液压泵泄漏状态识别
针对液压信号高度复杂且难以识别的特点,提出了一种基于堆栈稀疏自编码器(SSAE)与Softmax的深度神经网络(DNN)来对液压泵泄漏状态信号的特征进行优化与识别。对液压泵的压力与流量信号进行5层小波分解,计算5个高频系数与一个低频系数的样本熵值作为小波特征;融合信号的小波特征与时域特征作为低阶特征,输入构建的深度神经网络进行特征优化,学习输出高阶特征,并使用连接的Softmax层完成识别任务。实验结果表明,基于堆栈稀疏自编码器与Softmax构建的深度神经网络能够学习到液压信号的高阶特征,有效完成液压泵不同泄漏状态的识别,识别精度达到99.3%。此外与随机森林与支持向量机相比,该深度神经网络具有更好的识别精度。
-
共1页/1条