轧机伺服液压缸内泄漏故障诊断研究
针对目前轧机伺服液压缸故障诊断过程中,故障特征提取困难,信号非线性变化,数据量大的问题,提出了一种基于深度置信网络的轧机伺服液压缸故障诊断的方法。根据轧机系统工作原理,建立轧机系统仿真模型,对轧机内泄漏故障状况进行模拟。利用深度置信网络在智能故障诊断的优越性,将信号归一化处理后放入深度置信网络进行训练,然后通过反向传播学习,优化网络各参数,提高诊断精度。深度置信网络模型由多层玻尔兹曼机以及顶层BP神经网络组成。与传统BP神经网络方法进行比较,结果表明,在训练样本数据足够的条件下,深度置信网络模型在伺服液压缸内泄漏故障诊断具有更高的诊断精度。
-
共1页/1条