碧波液压网 欢迎你,游客。 登录 注册

一种滚动轴承振动信号自适应数据级融合方法

作者: 郭俊锋 樊怡明 来源:机械设计与制造工程 日期: 2025-01-26 人气:192
一种滚动轴承振动信号自适应数据级融合方法
传感器信号的充分利用对于设备和零件的状态监测具有重大意义。为了通过采集的多源振动信号得到设备和零件的完备退化信息,提出一种自适应加权数据级融合方法。首先对振动信号进行预处理,然后以K最近邻算法的分类结果作为粒子群优化算法的适应度函数,通过不断迭代,寻找多源传感器融合的最佳权重。对多源传感器融合系统、多源传感器融合方法以及滚动轴承的故障诊断进行了研究,最后在滚动轴承的全寿命周期数据集上进行试验验证,证明该方法实现了多源传感器采集数据的有效利用,能够完备反映滚动轴承的故障特征,对振动信号的故障诊断和寿命预测具有长远意义。

基于神经网络和证据融合的液压泵故障诊断研究

作者: 朱冠霖 王兆强 王异凡 李志峰 孙崇智 来源:机电工程 日期: 2021-12-31 人气:127
基于神经网络和证据融合的液压泵故障诊断研究
针对单一传感器检测易受到环境干扰,很难准确分辨出液压泵故障类型的问题,将神经网络分类识别及证据理论融合技术应用到液压泵故障诊断中。对自适应调节方法优化的粒子群神经网络(PSO-BP)故障分类、D-S证据理论中融合悖论及失效问题的改进进行了研究;使用认知因子、社会因子动态指导粒子寻优,并利用引力思想构造两条故障证据间新的冲突系数,进而提出了符合液压泵故障诊断的多源传感器数据融合模型;通过实验构造液压泵的6种运行状态并分别进行了故障诊断测试。研究结果表明:使用自适应调节方法优化的粒子群神经网络对液压泵的故障诊断准确率有所提高,分别达到93.50%、93.67%,融合诊断结果支持度均接近1,降低了诊断的模糊性。

基于PSO-BP与D-S证据的液压泵多源故障信号融合诊断

作者: 崔四芳 宋慧啟 李峰 卢治功 来源:机械设计与研究 日期: 2021-10-14 人气:102
基于PSO-BP与D-S证据的液压泵多源故障信号融合诊断
为了解决用单一(振动,压力,温度)传感器对液压泵故障诊断时效率低的问题,在PSO-BP诊断层的基础上,利用D-S证据理论对多传感器信号进行融合处理,建立了一种基于PSO-BP诊断层与D-S决策层融合的液压泵故障诊断模型,并针对液压泵正常状态以及五中典型故障(漏油,柱塞磨损,配流盘磨损,松靴磨损,轴承磨损)开展测试分析。研究结果表明:利用本故障诊断模型能够更准确判断柱塞磨损程度与松靴磨损状态,柱塞磨损诊断效率为98.6%,松靴磨损诊断效率为98.4%,单一传感器诊断精度没有超多90%,通过D-S决策层把数据融合后精度都在98%以上,证明了PSO-BP诊断层与D-S决策层融合模型的可行性。本研究具有很高的液压泵故障诊断效率,尤其适用于一些微弱的故障信息,对提前侦测故障危险具有很好的价值。
    共1页/3条