碧波液压网 欢迎你,游客。 登录 注册

基于NAKF和DBN的液压管路故障智能诊断方法

作者: 姚存治 张明真 张尚然 王冠群 来源:机电工程 日期: 2021-05-02 人气:87
针对航空液压管路故障识别困难的问题,提出了一种基于非线性自适应卡尔曼滤波器(NAKF)和深度信念网络(DBN)的液压管路智能故障诊断方法。首先,在传统卡尔曼滤波器(KF)的基础上,利用最小二乘法修正构造的Sigma点,消除高斯分布对Sigma点影响,提出了非线性自适应卡尔曼滤波器,并用其对仿真信号进行了降噪处理;然后,对液压管路实测振动信号中的随机噪声进行了去除,对深度信念网络模型参数进行了设计,并将液压管路数据集输入到深度信念网络模型中进行了训练;最后,基于同一样本数据,分别采用支持向量机(SVM)和反向传播神经网络(BPNN)等模型进行了训练处理,利用分类准确率等两个指标,对3种故障诊断模型进行了综合评估,对3种模型分类性能进行了对比分析。研究结果表明:采用NAKF-DBN智能故障模型得到的液压管路故障诊断准确率能达到99.72%,SVM模型和BPNN模...
    共1页/1条