轴承早期微弱故障特征提取的新方法
针对滚动轴承早期故障特征微弱,在强噪声下难以识别的问题,提出了一种基于软阈值归一化奇异值占比(SNSR-SVD)为准则的奇异值分解重构的方法。这种方法能够兼顾轴承早期故障特征的周期性和非平稳性,在重构信号中引入更多故障特征的细节信息。并且为了能够更好的提取轴承的冲击信号,将使用本方法重构后的信号通过以最大谱峭度法优化最优频率与带宽的滤波器,最后对滤波后的信号进行包络解调分析。通过与其他方法进行仿真与实验的对比验证,证明本方法的优越性。
基于小波分析和RBF神经网络的轴承故障诊断研究
为了提高轴承故障信号的诊断性能,采用小波分析和RBF神经网络相结合的方法对轴承振动信号进行故障分类。首先对轴承振动信号进行小波变化,采用软阈值去噪方法滤除振动信号噪声,然后对振动信号矩阵化处理,接着构建RBF神经网络,输入轴承振动信号特征向量,初始化权重和阈值,最后通过不断反向迭代得到稳定的RBF神经网络故障判别模型。实验证明:通过差异化设置隐藏层神经元数量,确定合适的RBF神经网络规模,经过小波去噪可以有效提高轴承故障判别准确率,相比于常见轴承故障分类算法,算法具有更高的故障判别准确率。
-
共1页/2条