核极化的核参数选择算法
对支持向量机中核函数的核参数选择问题进行了研究,在深入分析核极化这一核函数度量标准的前提下,提出了一种直接最大化核极化的Gaussian核和Polynomial核的核参数选择算法。首先,设置核参数的搜寻范围,然后,计算在特定核参数下的核极化值,最后,选择出最佳的核参数值进行训练和测试。相比于传统经典的10折交叉验证,该算法无须反复训练和测试分类器,能高效地实现核参数的选择。UCI数据集的实验结果表明了所提出的最大化核极化与核参数选择算法在多分类中具有较好的泛化性能和预测精度,验证了该方法的有效性。
-
共1页/1条