碧波液压网 欢迎你,游客。 登录 注册

基于孪生网络结构的轴承故障诊断研究

作者: 赵志宏 吴冬冬 来源:机床与液压 日期: 2024-12-17 人气:85
基于孪生网络结构的轴承故障诊断研究
针对轴承故障诊断中故障样本稀缺、深度神经网络模型在小样本条件下存在故障诊断准确度较低的问题,提出将深度神经网络扩展为孪生网络结构的框架,以提高在小样本条件下的故障诊断性能。孪生网络通过权值共享的骨干网络从样本对中提取特征,采用L1距离判定样本对的特征相似度,实现轴承故障诊断。不同于传统深度神经网络,孪生网络采取输入样本对的方法,在故障数据不足的情况下,可以提高轴承故障诊断性能。分别将不同层数的卷积神经网络(CNN)与长短期记忆网络(LSTM)扩展为孪生网络结构,在实测轴承数据集上进行小样本故障诊断实验。实验结果表明,通过扩展为孪生网络结构可以提高故障诊断结果的准确率,孪生CNN网络比对应的CNN网络准确率平均提高1.08%,孪生LSTM网络比对应的LSTM网络准确率平均提高4.78%。

高速列车的样本关联改进故障诊断方法

作者: 张楷 罗怡澜 邹益胜 王超 宋小欣 来源:中国机械工程 日期: 2021-04-22 人气:143
高速列车的样本关联改进故障诊断方法
聚合经验模态分解和基于变量预测模型的模式识别的结合是一种有效的机械故障诊断方法。针对该方法在高速列车故障诊断时存在小样本方法不适用和识别率较低等不足,首先采用滑窗逐步回归法对基于变量预测模型进行了适应性改进,再利用样本间的关联性和连续性,将相邻样本纳入模式识别,并进行样本平滑性处理,从而有效提高了故障诊断识别率。实验分析结果表明,改进方法降低了对样本量的需求,故障识别率提高了20%以上。
    共2页/12条