改进混沌粒子群优化的灰色系统模型在机床热误差建模中的应用
为减少热误差对数控机床加工精度的影响,提高灰色系统模型(GreysystemModel,GM)的预测精度,尝试将改进混沌粒子群优化(Improvemen Chaotic Particle Swarm Optimization,ICPSO)算法引入到灰色系统模型中,提出一种基于改进混沌粒子群优化算法的灰色系统模型数控机床热误差建模方法。首先,建立粒子群优化(Particle Swarm Optimization,PSO)粒子与GM(1,N)系数的映射关系;其次,ICPSO中混沌理论的Logistic映射对粒子群的位置和速度进行初始化,通过优化搜索得到最优GM(1,N)系数和输入子集;最后,建立改进混沌粒子群优化的灰色系统模型(ICPSO.GM),对数控机床热误差进行预测。仿真实验表明,ICPSO-GM预测精度高于GM和人工神经网络(ANN)模型,证明了ICPSO-GM能有效地解决数控机床热误差预测问题。
-
共1页/1条