准三维机器人路径规划的改进蚁群算法
机器人在荒野物资运输和山地自由行走时,需要在山地表面规划出行走路线,为此提出改进的蚁群算法加以求解。根据坡度提出避障规则,在满足避障约束条件下,合理增加路径的多样性;根据当前节点到目标点和起点的距离,重新设计启发式函数,驱使机器人尽量沿着起点和目标点之间的最短路径行进;依据实时路径长度,动态调整挥发系数,以精炼搜索空间、提高收敛性能。将改进蚁群算法与原始算法进行比较,实验结果表明改进蚁群算法的有效性优于原始蚁群算法。
复杂环境下基于改进人工蜂群算法的机器人路径规划
为了使机器人在复杂环境下规划出最优路径,提出了基于改进人工蜂群算法的路径规划方法。分析了传统的人工蜂群算法原理;为适应复杂环境下路径规划,引入了小步长侦查蜂用于侦查跟随蜂可能前进方向的障碍物分布情况,根据侦查出的障碍物复杂度和节点与目标点距离对可行节点进行评分,得分大小作为跟随蜂选择下一节点的依据,这样就可以使跟随蜂成功避开障碍物复杂区域。使用改进算法进行路径规划,将规划结果与传统蚁群算法和传统人工蜂群算法比较,改进人工蜂群算法规划路径最短,且算法耗时最少。
-
共1页/2条