超强启发异类蚁群算法的机器人导航路径规划
为了提高机器人在栅格环境下的路径规划质量,提出了基于超强启发式异类蚁群算法的路径规划方法。建立了机器人工作环境的栅格模型;在蚁群算法基础上,提出了由开创型蚂蚁、守旧型蚂蚁、传统型蚂蚁组成的异类蚁群算法,并通过仿真看出,开创型蚂蚁主导的异类蚁群算法具有最优性能;在信息素更新方面,按照“奖励先进、惩罚后进”的原则,提出了超强启发式信息素更新方法,引导传统型蚂蚁和守旧型蚂蚁快速向开创型蚂蚁搜索的较优路径靠近。经过仿真验证,异类蚁群算法在简单环境和复杂环境下规划的路径均优于传统蚁群算法,且异类蚁群算法寻优稳定性更好,寻优耗时更短。
-
共1页/1条