碧波液压网 欢迎你,游客。 登录 注册

具有多核结构的稀疏化DNN在轴承诊断中的应用

作者: 吴小龙 雷文平 陈宏 韩捷 来源:机械设计与制造 日期: 2024-09-25 人气:136
为了进一步提高深度神经网络(Deep Neural Network,DNN)在轴承故障诊断中的可靠性和稳定性,对深度学习(Deep Learning)中的一些关键技术进行了研究、借鉴以及改进。具体地沿用传统DNN中被广泛用于无监督学习的去噪自动编码器(Denoising Auto-encoder,DAE)进行特征提取,使得特征提取过程不再依赖于先验知识;然后对传统DNN中的DAE进行稀疏化处理,使得特征的提取更加合理、准确;并在DNN中引入核函数运算形成多核结构,提高诊断结果的可靠性以及鲁棒性。最后通过具体的实验,与传统DNN、支持向量机(Support Vector Machine,SVM)等故障诊断方法相对比,来最终反映基于稀疏化DAE的多核结构DNN在轴承故障诊断领域更优越的正确率与稳定性。

深度Laplacian正则化自动编码器的旋转机械故障诊断

作者: 彭博 张毅 蹇清平 于翔 来源:机械设计与制造 日期: 2024-08-06 人气:164
为了解决传统深度自动编码器存在的过度拟合以及泛化能力弱等问题,提出一种基于深度Laplacian正则化自动编码器的不平衡旋转机械故障诊断。首先将采集到的振动信号输入到构造的深度Laplacian正则化自动编码器模型中进行逐层特征提取,将Laplacian正则化项引入到深度自动编码器的原始目标函数中,以平滑故障诊断模型中数据的流形结构,从而提高故障诊断框架的泛化性能,然后利用BP分类器对提取的深层判别敏感特征流进行故障诊断。最后通过CWRU故障数据集实验结果证明提出的方法能够实现旋转机械平衡与不平衡数据集的精确故障诊断没并且具有较好的泛化性能。

基于改进LSTM的航空发动机寿命预测方法研究

作者: 郭晓静 殷宇萱 贠玉晶 来源:机床与液压 日期: 2021-02-24 人气:77
发动机剩余寿命(RUL)预测时,进行数据特征提取易导致预测效率低下。为解决此问题,提出一种改进的长短期记忆(LSTM)算法模型。通过引入深度稀疏自动编码器(SDAE)完成时序数据的处理与特征提取,优化LSTM模型,改善航空发动机RUL预测效果。利用SDAE进行特征提取,构建健康因子(HI)曲线;同时考虑运行工况、故障模式和传感器3个因素,并分别训练其权重。利用LSTM模型进行发动机剩余寿命预测。利用涡扇发动机退化过程数据集C-MAPSS开展实验,并与DNN、BiLSTM、单层L

基于自动编码器和SVM的轴承故障诊断方法

作者: 雷文平 吴小龙 陈超宇 林辉翼 来源:郑州大学学报(工学版) 日期: 2020-12-21 人气:146
基于自动编码器和SVM的轴承故障诊断方法
支持向量机(support vector machine,SVM)应用于轴承故障诊断前,首先要提取轴承的特征信号.在以往的特征信号提取中,往往是依据已有的知识模型进行特征筛选.随着近年来深度神经网络(deep neural network,DNN)的应用与推广,自动编码器(auto-encoder,AE)在特征提取方面的优势尤为突出.作为一种无监督的学习方式,AE能够基于数据驱动提取信号的特征值,使得特征提取不再依赖于先验知识,从而让整个故障诊断过程更具智能化.本文运用改进的AE、去噪自动编码器(denoising autoencoder,DAE),进行轴承信号特征提取,并用SVM进行故障诊断.最终与基于经验模态分解(empirical mode decomposition,EMD)能量熵的SVM对比,反映具有无监督学习方式的DAE-SVM在轴承故障诊断方面的优越性,诊断准确率接近100%.

H-K-ELM在滚动轴承故障诊断中的应用

作者: 秦波 孙国栋 王建国 来源:机械设计与制造 日期: 2020-12-03 人气:112
H-K-ELM在滚动轴承故障诊断中的应用
针对滚动轴承振动信号的不规则性和复杂性,导致轴承状态难以有效识别的问题,提出基于分层核极限学习机(HierarcHical Kernel Extreme Learning MacHine,H-K-ELM)的滚动轴承故障诊断方法。首先,将测得信号经集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)处理后得到一系列IMF本征模态分量,并提取各分量的排列熵PE值组成高维特征向量集;其次,利用高斯核函数的内积来表达ELM算法的隐含层输出函数,然后使用自动编码器对其分层,从而隐含层节点数自适应确定和隐含层阈值与输入权值满足正交条件;最后,将所得高维特征向量集作为H-KELM算法的输入,通过训练建立核函数极限学习机滚动轴承故障分类模型,进行滚动轴承不同故障状态的分类辨识。实验结果表明:H-K-ELM滚动轴承故障分类模型比ELM、K-ELM故障分类模型具有更高的精度、更强的稳定性。

一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用

作者: 张西宁 向宙 唐春华 来源:西安交通大学学报 日期: 2020-11-29 人气:113
一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用
为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷积核进行优化。进一步,编码特征可以作为新的输入,利用同样的方式进行编码,依次循环,最后给网络加上全连接网络和分类器,用少量带标签样本进行微调,形成具有复杂特征提取能力的深度卷积自编码网络。将该网络用于滚动轴承故障识别,将时域振动信号直接输入网络,在公共数据集——西储大学轴承数据集以及实验室实测数据集上均取得了比传统卷积神经网络要好得多的识别效果,例如在实验室实测数据集上将识别精度从0.799提高到了0.921。将底层提取到的特征通过反卷积核逐层重构,第...
    共1页/6条