基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取
针对齿轮箱的滚动轴承故障信号因噪声干扰,难以进行有效提取的问题,提出了基于变分模态分解与快速谱峭图相结合的轴承故障特征提取方法。首先,利用变分模态分解(Variational Mode Decomposition,VMD)将振动信号分解成若干个本征模态分量(Intrinsic Mode Function,IMF),通过相关峭度计算选取故障信息最突出的分量信号;然后,利用快速谱峭图自适应地确定带通滤波;最后,对滤波后的信号进行平方包络谱分析,提取出故障信息。通过公开数据分析和齿轮箱轴承故障实验,证明了该方法的有效性和可行性。
基于典型谱相关峭度图的滚动轴承故障诊断方法
针对工程实际中滚动轴承发生故障的类型具有典型性和故障冲击信号具有周期性的特点,提出了一种典型谱相关峭度图算法。该算法在借鉴典型谱峭度图算法区间划分的思想基础上,将相关峭度指标代替峭度指标,不但避免了宽频带解调引入的噪声干扰,而且充分利用了典型故障冲击的周期性信息,并通过优化谱相关峭度值,快速定位典型故障冲击信号所在的频率区间,并将该算法应用于最优解调频带的确定。通过对仿真信号和轮对轴承实验信号的分析表明,该算法无论在准确性还是在稳定性方面均表现出了极大的优越性,能够有效的自适应定位共振频带。
基于变分模态分解和相关峭度的齿轮箱混合故障诊断
针对齿轮箱混合故障信号非线性、非平稳、噪声成分多以及多故障信号相互干扰的特点,提出了基于变分模态分解和相关峭度的齿轮箱混合故障诊断方法。利用变分模态分解能够有效地将信号分解为若干个具有紧致性模态分量的特点,对混合故障信号进行分解处理,将包含不同故障的模态分量分离出来;然后,根据相关峭度能够识别不同周期的冲击性信号的特点,利用最大相关峭度原则提取出包含不同故障的模态分量;最后,对这些模态分量进行包络分析,实现混合故障诊断的目的。通过实验信号的分析验证,证明了所提方法应用在混合故障诊断中的有效性。另外,分析了模态分量个数变化对方法结果的影响,为后续研究提供了经验性的结论。
-
共1页/3条