基于AR能量比-FCM的滚动轴承退化状态定量评估
在长期的使用过程中,滚动轴承的使用性能会发生不同程度的退化,如果能对工作中滚动轴承的退化程度定量评估,则可以避免事故的发生。使用自回归模型对滚动轴承全寿命周期的振动信号进行滤波,计算滤波后剩余分量能量与滤波后信号能量的比值,即AR能量比,以此作为特征向量。采用min-max标准化方法处理得到的特征向量,输入到建立好的模糊C均值(FCM)模型中,得到性能退化指标DI值,并描绘出性能退化曲线。对信号进行包络谱分析,验证评估结果的正确性。
轴承故障分析与数据存储系统设计
为了提高轴承故障检测的精度和普适性,设计了一种基于Lab VIEW的滚动轴承故障在线分析系统。采用熵值法构造峭度、均方根的联合评价指标,对滤波信号作初步诊断;调取MATLAB程序,对携带故障信息的信号进行包络谱分析,确定故障发生的具体时间、具体部位;将原始振动信号及分析数据定时分类存储在数据库和TDMS文件中,节约了存储空间,且方便历史数据的调取验证。系统应用案例证实了此设计有较高的环境适应能力和鲁棒性,整体设计具有一定的应用价值。
独立分量分析在齿轮箱复合故障中的包络提取
针对传统包络谱分析对复合故障提取失效的问题,提出了独立分量分析(Independent Component Analysis)和包络谱相结合的方法。首先对四通道采集信号进行包络分析获得包络谱图,从图中可发现存在故障频率信息,但无法做到对故障的准确定位,接着对包络信号进行ICA处理得到独立分量,在独立分量中分别找出与故障相对应的频率信息。应用该方法对齿轮箱进行故障信号提取,成功的识别出滚动轴承外圈故障及齿轮断齿故障,仿真和试验结果验证了本方法的可行性和有效性。
基于阶次分析和EWT的轴承故障诊断研究
针对非平稳工况下,轴承故障信号表现出来的非平稳性、故障特征难以提取等特点,提出将阶次分析与经验小波变换(EWT)相结合的故障特征提取方法,使用LabVIEW软件开发平台对上述方法进行编程实现。利用机械故障仿真实验台(MFS)得到非平稳工况下轴承内圈故障信号并以其进行分析,分析结果表明基于阶次分析与EWT相结合的方法能准确识别非平稳工况下轴承故障特征,解决了传统阶次分析方法无法有效识别故障特征的问题。
ABC-VMD和包络谱分析在齿轮故障诊断中的应用
针对齿轮箱故障的非线性、非稳定性特点,提出了一种参数优化变分模态分解(Variational mode decomposition,简称VMD)提取特征频率的方法。首先,利用人工蜂群算法(Artificial bee colony algorithm,简称ABC)对VMD分解的层数和惩罚因子进行自适应选择;其次,根据互信息法在VMD分解后得到的有限个本征模态函数(Intrinsic mode function,简称IMF)中选择最佳模态函数;最后,对该模态函数进行包络谱分析,有效提取齿轮故障特征频率。仿真与实验结果表明,与经验模态分解(Empirical mode decomposition,简称EMD)以及基于粒子群优化算法(Particle swarm optimization,简称PSO)的变分模态分解方法相比较,ABC-VMD方法自适应性强,可以有效克服模态混叠、信号丢失及过度分解问题,能够准确诊断齿轮箱故障,同时避免PSO-VMD易陷入局部最优的缺点。
-
共1页/5条