高速列车受电弓气动噪声分布特性及仿生降噪研究
随着列车运行速度的提高,列车产生的噪声对周围环境产生的影响愈发严重。高速列车受电弓位于车顶,其产生的气动噪声成为高速列车主要噪声来源之一。选取某典型受电弓结构建立受电弓的流体及气动噪声的仿真分析模型,通过大涡模拟方法计算流场场量的分布特征及气动噪声大小。根据仿真分析结果研究受电弓气动噪声产生的机理,并在此基础上引入翼缘仿生结构对当前受电弓结构进行优化改进。研究结果表明,仿生优化后的受电弓能够有效降低受电弓尾涡脱落量,降低了气动噪声,并且其宽频噪声品质表现较好,具有比较良好的空气动力学性能。另外,优化后的受电弓适当的提高了受电弓的升力,可以减小跳网情况的发生,有助于受流稳定,具有一定的工程参考价值。
高速列车受电弓气动噪声分析与弓头降噪研究
针对高速列车不断提速导致气动噪声急剧增加产生的环境噪声污染问题,通过建立复兴号高速列车受电弓气动噪声分析模型,利用RNG k-ε模型、大涡模拟及FW-H声类比法对复兴号受电弓进行气动噪声源特性、远场噪声传播规律、频域分布规律进行研究。数值模拟结果表明整车最大噪声源部位为受电弓的弓头;受电弓的远场气动噪声在其质心指向弓头方向最大,远场气动噪声与传播距离的对数线性相关;受电弓气动噪声的频域较宽,分布在25~6000 Hz范围内,主频在145~315 Hz之间。根据研究结果,对主要噪声源即受电弓弓头进行仿生降噪研究,考虑高速列车双向运行特性,在碳滑板和圆杆上施加前后对称椭球状凸起结构,当碳滑板凸起60 mm、圆杆凸起10.5 mm时,降噪效果最明显,在7.5 m远处整车总声压级降低了2.56 dBA。
基于fluent的高速列车受电弓主被动整体降噪研究
针对高速列车气动噪声越来越大的问题,本文以高速列车某车型为参考建立1∶1受电弓区域局部模型,基于宽频带噪声源模型、LES大涡模拟及FW-H声学模型,运用弓头仿生降噪和底部空腔主动射流降噪的整体降噪措施,采用数值模拟法研究高速列车受电弓区域的降噪效果。结果表明受电弓弓头和底部空腔是气动噪声的主要来源;降噪后,主要噪声源的声功率级都有了较大降幅,其中弓头和空腔部位分别降低了15.28 d B和16.92 d B;中高楼层住宅处的降噪效果更佳,最大声压级降低位置在距地面18 m高处(距受电弓25 m远处),降低了4.94 d BA;远场声压级在低频区域降噪效果更为显著,特别是在800 Hz位置声压级降幅最大,降低了8.21 d BA。
基于fluent的高速列车受电弓主被动整体降噪研究
针对高速列车气动噪声越来越大的问题,本文以高速列车某车型为参考建立11受电弓区域局部模型,基于宽频带噪声源模型、LES大涡模拟及FW-H声学模型,运用弓头仿生降噪和底部空腔主动射流降噪的整体降噪措施,采用数值模拟法研究高速列车受电弓区域的降噪效果。结果表明受电弓弓头和底部空腔是气动噪声的主要来源;降噪后,主要噪声源的声功率级都有了较大降幅,其中弓头和空腔部位分别降低了15.28 d B和16.92 d B;中高楼层住宅处的降噪效果更佳,最大声压级降低位置在距地面18 m高处(距受电弓25 m远处),降低了4.94 d BA;远场声压级在低频区域降噪效果更为显著,特别是在800 Hz位置声压级降幅最大,降低了8.21 d BA。
仿生技术在液压领域中的应用和展望
综述了仿生技术在液压缸中密封、减阻抗磨以及降噪等方面的应用,提出了运用形态、结构和材料多元耦合仿生技术在液压降噪、液压缓冲吸能、液压油温冷却等液压应用领域方面进行设计制造并替换液压元件的设想,以期更大程度提高液压元件的性能。
-
共1页/5条