基于改进YOLO v3的轴承端面缺陷检测算法
为提高轴承端面缺陷检测的速度以及检测精度,提出一种基于改进YOLO v3的轴承端面缺陷检测算法。首先,对图像数据集进行数据增强处理以防止产生过拟合现象;其次,通过改进K-means聚类算法重新聚类出目标检测的Anchor Boxes,并引入SKNet注意力机制模块对原网络结构以及输出层结构进行改进;最后对改进的YOLO v3算法进行实验验证,并与原YOLO v3算法进行对比分析。结果表明,改进后的YOLO v3算法相比原YOLO v3算法对轴承端面缺陷检测的mAP值提升了7.03%,检测速度提升了34.7帧/s,验证了改进算法的有效性。
-
共1页/1条