应用RBF神经网络的订单完成时间(OCT)预测
针对传统OCT预测对于影响因素考虑不周以及预测准确率低的问题,在实时作业车间基础上考虑RBF神经网络的优势,提出了一种基于RBF神经网络的OCT预测方法。首先,剖析了OCT的主要影响因素,明确了订单构成和车间实时负载对于OCT的影响;然后,利用FLEXSIM仿真平台,建立了离散制造车间生产过程的先进仿真模型。采用仿真方法采集样本数据,利用RBF神经网络搭建OCT预测模型;最后,运用实例阐述了OCT预测的完整过程。结果表明,该方法对OCT的预测具有更好的效果。
-
共1页/1条