自适应FOA-SVR在铝电解槽出铝量预测中的应用
为进行铝电解槽出铝量预测,提出了一种基于自适应FOA-SVR模型的铝电解槽出铝量预测方法。首先,设计了一种自适应果蝇优化算法,基于三维搜索空间引入自适应步长,并应用于支持向量回归模型参数优化。其次,选取槽平均电压、槽电阻、槽温度、加料量、氟盐量等5个影响铝电解槽出铝量的因素作为模型输入向量,对电解槽出铝量进行预测。最后,以某公司铝电解槽生产数据为例进行实验验证,自适应FOA-SVR模型预测结果相比FOA-SVR模型提高了预测精度和收敛效率,为电解铝产量预测提供了有效模型,具有一定的推广价值。
-
共1页/1条