激光多普勒测速仪中的频谱分析技术
为了提高激光多普勒测速仪的测速精度,将频谱分析技术应用于多普勒信号的处理中,先对信号进行频谱细化,再对细化后的频谱进行校正。阐述了几种常见的频谱细化和频谱校正算法的基本原理,并对它们的频谱分析精度和运算量进行了比较。在Mauab平台上将它们应用于理想正弦信号进行仿真,比较了各种算法的优缺点,最后将频谱细化和频谱校正技术应用于实测多普勒信号的处理中。仿真和实验结果表明:频谱细化技术可以大大提高激光多普勒信号的频谱分辨率,频谱校正技术可以准确地校正多普勒频率,减小信号处理的误差。将其运用于激光多普勒测速仪中切实可行,为设计高精度的激光多普勒测速仪创造了条件。
Moore响度的三种计算方法
简单介绍了Moore响度模型的计算过程,针对该模型以参数化方式输入信号频谱的特点,提出了直接FFT(快速傅里叶变换)频谱算法、FFT校正频谱算法和1/3倍频程谱算法等3条Moore响度计算路线,分析对比了3种不同算法对典型信号响度计算精度的影响。分析结果表明:对纯音或复合音信号,可采用FFT校正频谱算法或点数为4096的直接FFT频谱算法计算响度;对带宽较宽的噪声信号,建议采用1/3倍频程谱计算响度。
基于LabWindows/CVI和DSP的高精度频谱分析系统
介绍一种以LabWindows/CVI为软件平台,PC和DSP为硬件平台的虚拟仪器系统。该系统能够实现信号实时采集,对信号进行时域分析和频域分析,并可通过相位差法等四种频谱校正方法实现频谱校正,以此提高系统频谱分析的精度。
-
共1页/3条