基于输出预估自抗扰策略的加筋壁板结构多模态振动主动控制
针对加筋壁板结构中存在的模型难以精确确定和多模态外界干扰等问题,基于加速度传感器,提出了一种不依赖结构精确数学模型的多模态线性自抗扰振动主动控制(Linear Active Disturbance Rejection Control)策略。由于加速度传感器和压电驱动器的异位配置不可避免地使得整个控制系统存在时延。为解决该问题,利用Smith预估器的原理,引入输出预估器来补偿时延,这样设计的自抗扰振动主动控制器能够很好地解决时延对结构振动性能的影响。基于dSPACE实时仿真平台、利用加速度传感器、压电片驱动器,设计并建立四面固支压电加筋壁板结构实验系统,对提出的控制方法进行试验比较研究。最后的试验结果表明,采用提出的具有输出预估功能的自抗扰振动控制器,能够快速有效地抑制结构的多模态振动。
基于加速度反馈和自抗扰的加筋壁板结构复合振动控制
四面固支加筋壁板结构中存在的模型难以确定等多种不确定因素,影响了闭环结构的振动控制性能。针对这一问题设计了一种不依赖结构数学模型的加速度传感信号反馈和二阶线性自抗扰复合振动主动控制策略,并在理论上分析其稳定性和优越性。首先,采用二阶线性自抗扰控制器实时估计对象模型变化及其外扰组成的广义干扰,并将估计值作为补偿信号前馈到控制信号中消除广义干扰对系统的影响;然后,设计加速度传感信号和线性状态误差反馈的自抗扰复合振动控制器;最后,基于dSPACE实时仿真系统,建立了四面固支加筋壁板结构的主动振动试验平台。利用加速度传感器和压电片驱动器抑制加筋壁板结构振动,并对提出的控制方法进行对比试验。几种外界干扰激励的试验结果表明,该方法不仅能有效抑制由于正弦激励和外界冲击引起的振荡...
-
共1页/2条