含轴向裂纹等径焊制三通的塑料性极限载荷
在几个简化假设的前提下,采用弹塑性有限元方法,系统分析了内压下含轴向裂纹的等径焊制三通的极限载荷及其变化规律。分别给出了含轴向裂纹、穿透型裂纹及表面裂纹的三通极限载荷的估算公式,并将估算公式计算出的值与有限元数值解进行了比较。结果表明,深短裂纹和浅表面裂纹对极限载荷影响很小,内表面和外表面两种裂纹形式对极限载荷的影响差别不大;可采用外表面裂纹来分析;给出的估算公式具有较高的精度和合理的保守性。
含轴向裂纹等径焊制三通的塑性极限载荷
在几个简化假设的前提下,采用弹塑性有限元方法,系统分析了内压下含轴向裂纹的等径焊制三通的极限载荷及其变化规律。分别给出了含轴向裂纹、穿透型裂纹及表面裂纹的三通极限载荷的估算公式,并将估算公式计算出的值与有限元数值解进行了比较。结果表明,深短裂纹和浅表面裂纹对极限载荷影响很小,内表面和外表面两种裂纹形式对极限载荷的影响差别不大;可采用外表面裂纹来分析;给出的估算公式具有较高的精度和合理的保守性。
挤压三通弹塑性应力分布的有限元分析
本文采用弹塑性有限元方法,系统研究了结构尺寸D/T,r/D(名义直径和壁厚之比,肩部半径和主管名义直径之比)对挤压三通应力分布的影响。计算结果表明增大三通肩部过渡半径可以降低主、支管过渡区的最大应力,同时也使得该部位的高应力范围扩大,增大壁厚能够有效的降低相贯区和腹部的应力水平,但并不会改变应力分布规律,研究结果可为三通优化设计和含缺陷结构的完整性评定提供依据。
复杂载荷下管道三通的塑性极限载荷
目前对于管道三通在内压和弯矩联合作用下的塑性极限载荷累积规律有三种不同的观点,即线性方程累积、抛物线方程累积和圆方程累积模式.文中采用非线性有限元方法分析内压与弯矩联合作用下(包括面内弯矩和面外弯矩两种形式)管道三通的塑性极限载荷,结果表明其累积形式基本上介于抛物线方程和圆方程之间,并且与结构几何参量有关.最后在数值分析的基础上提出复杂情况下考虑几何因素的三通塑性极限载荷工程估算式,并用试验结果进行验证.
面内弯矩下焊制管道三通的塑性极限载荷
基于极限分析的观点,推导了工业中焊制管道三通在面内弯矩工况下的极限载荷估算式.实验数据验证和与基于ASME规范及Billington经验公式的比较表明:极限载荷估算式对管道三通的塑性极限弯矩估算有较高的精度,在工程应用中具有参考价值.
含环向裂纹等径焊制三通极限压力(Ⅰ)——有限元分析
采用三维弹塑性小变形有限元技术,对内压下含以腹部为中心的环向裂纹等径焊制三通的极限载荷进行了系统分析。结果表明(a/T≤0.5)和短深裂纹(a/T≥0.75)对极限压力影响很小,肩部中心裂纹以对三通极限承载能力的削弱远小于腹部中心理裂纹。此结果可为压力管件完整性评估提供基础数据。
基于柔性金属布技术的梯度WC增强NiCrBSi合金涂层的制备及性能
采用折叠辊压技术制备NiCrBSi合金粉和WC合金粉体积比i分别为1∶1,2∶1,5∶1,10∶1,20∶1的WC合金增强NiCrBSi合金柔性金属布,将i为20∶1的金属布置于316L不锈钢基体上,再叠放一层其他体积比的金属布,采用真空钎焊制备得到4种梯度WC增强NiCrBSi合金涂层,研究了涂层中WC颗粒的分布以及涂层的耐磨性和拉伸性能。结果表明:当金属布厚度在0.5mm、钎焊保温时间为10min时成功制得梯度涂层,随着上层金属布中i的增大,涂层中WC颗粒分布的梯度斜率降低;梯度涂层明显提高了基体的耐磨性,且随着梯度斜率的增加,涂层的耐磨性逐渐增强,抗拉强度降低,在拉伸过程中,梯度斜率较大的涂层中会产生多条贯穿裂纹。
-
共1页/7条