双轴同步运动系统滑模PID交叉耦合控制
为解决双轴同步平移机构运动过程中,双轴之间的同步协调控制问题,减小同步误差。本文提出了一种结合滑模PID控制和交叉耦合控制的同步控制方法。首先根据机构结构和运动特点分析了耦合同步误差并建立了系统模型,然后设计了滑模PID控制器来提高双轴运行稳定性,同时采用交叉耦合控制方法将同步误差作为反馈来修正速度给定。最后通过机构实际运动进行了实验对比验证,实验结果表明该控制方法相对普通PID控制方法可有效减小位移同步误差,提高同步性能。该方法也为类似机构的同步控制提供了参考。
气动伺服系统的BELC压力控制
由于气动伺服系统受非线性因素的影响,传统PID控制在解决高精度非线性控制问题时效果不理想。一种基于大脑情感学习控制器(Brain Emotion Learning Controller,BELC)的气动伺服系统压力控制方法被提出。首先,对气动伺服系统进行数学建模。然后,结合气动系统非线性和BELC控制特性进行算法改进,采用模糊控制对BELC权值学习率进行在线调节。最后,搭建实验平台分别对传统PID控制、BELC控制及改进的模糊BELC控制进行实验,结果表明:改进后模糊BELC算法有效提高了气动伺服系统的控制精度和响应速度,改善了气动系统控制性能。
5.5m×4m声学风洞在中俄民机起落架噪声特性及控制技术联合研究中的应用
以中国-俄罗斯民用飞机起落架噪声特性及控制技术联合研究中所使用的5.5 m×4 m声学风洞(FL-17风洞)为例,介绍了大型声学风洞在科研工作中的应用情况。首先介绍了FL-17风洞的研制历程与各项性能指标;然后基于中俄联合研究中的大尺度起落架气动噪声风洞试验,概述了起落架噪声相关领域的研究现状,以及利用FL-17风洞开展的起落架噪声机理与控制技术方面的研究内容与成果,如试验、数值模拟和噪声预测数据库,以及基于非常规截面方法和空气幕方法的起落架降噪技术等;最后,对于大型声学风洞的科研使用给出了一些经验和建议。
自抗扰控制器的无摩擦气缸控制研究
气动伺服系统是典型的非线性系统,因气体的可压缩性及阀口流量的非线性等因素,传统的控制策略(如PID)的控制性能很难达到系统要求,对其实现高精度的压力控制尤为困难.针对比例流量阀及无摩擦气缸的气动伺服系统建立二阶数学模型,建模过程为控制算法提供一个大致精确的参考模型.之后,将自抗扰控制算法引入到伺服系统控制器设计中,并基于Labwindows CVI开发平台对该系统实现高精度压力控制.实验结果表明,相比较于传统PID控制器,自抗扰控制器具有控制精度高,响应速度快,抗干扰能力强等优点.
-
共1页/4条