碧波液压网 欢迎你,游客。 登录 注册

基于1-DCNN-LSTM的滚动轴承自适应故障诊断方法研究

作者: 顾鑫 唐向红 陆见光 黎书文 来源:机床与液压 日期: 2021-08-25 人气:173
基于1-DCNN-LSTM的滚动轴承自适应故障诊断方法研究
针对滚动轴承故障振动信号的非线性和非平稳特征,提出了一种自适应的一维卷积神经网络(1-Dimensional Convolutional Neutral Networks,1-DCNN)和长短期记忆网络(Long Short-Term Memory,LSTM)融合的轴承故障诊断方法。首先,将原始一维振动信号通过有重叠取样的方式分别输入1-DCNN和LSTM两个通道,然后通过Concatenate层进行空间和时间维度上特征信息的融合,最后,通过Softmax分类器进行故障类别的分类输出。该方法可以直接从原始振动信号中自适应提取特征,实现了"端到端"的故障诊断。采用CTU-2实验平台故障数据,通过对滚动轴承的不同故障类型、不同传感器采集方位、不同故障直径进行实验分析,结果表明:该方法在识别轴承故障类别上与其他方法相比具有更高的识别精度,并具有良好的有效性和稳定性。
    共1页/1条