碧波液压网 欢迎你,游客。 登录 注册

基于深度学习和多传感器的数控机床铣刀磨损状态信号监测方法研究

作者: 徐卫晓 谭继文 井陆阳 唐旭 来源:机床与液压 日期: 2021-04-13 人气:151
基于深度学习和多传感器的数控机床铣刀磨损状态信号监测方法研究
由于单一传感器存在获取信息量有限、抗干扰能力较弱等问题及传统网络模型诊断时间长、诊断率低等现象,采用振动、噪声等多个传感器监测铣刀的磨损状态。提出将深度学习和多传感器相结合的铣刀磨损状态信号监测方法;将经核主元筛选和未筛选的数据分别输入到BP神经网络、RBF神经网络和深度卷积神经网络中进行模式识别,并对识别结果进行对比和分析。结果表明:深度学习和多传感器相结合的铣刀磨损状态监测方法在特征量比较大、数据量比较多的情况下诊断速度、准确率均比较高,在铣刀磨损状态监测中具有明显的优势。

基于残差网络的钢丝绳损伤图像定量识别

作者: 陈荣信 井陆阳 白晓瑞 徐卫晓 李建辉 来源:机床与液压 日期: 2021-03-01 人气:201
基于残差网络的钢丝绳损伤图像定量识别
目前基于机器视觉的钢丝绳表面损伤检测基本均采用定性检测的方法,在定量检测方面的研究极少,而断丝数量是钢丝绳报废的重要标准,因此,提出一种基于机器视觉和残差网络的钢丝绳表面损伤定量识别方法。将采集到的钢丝绳损伤图像进行批量裁剪,以消去背景噪声;对训练集中的图像利用数据增强技术,进行随机裁剪和随机水平翻转,扩充训练集大小;然后,对数据集中的图像进行归一化和标准化,提高模型的收敛速度;最后将训练集和验证集输入到使用SGD算法优化的残差网络中进行训练,训练结束后再使用测试集对模型进行验证。实验结果表明:经过迭代训练后,模型在测试集上对钢丝绳损伤的定量识别准确率为93.5%。
    共1页/2条