模块化气动扭转软体抓手的仿真与实验
现有软体抓手多为多指结构,这种结构对于较大较长棒状物体的抓取效果并不理想,基于此设计制作了一种模块化气动扭转软体抓手,可由多个软体驱动器组成。首先使用ABAQUS软件对腔室角度45°、60°、75°进行有限元分析,选出较佳的腔室角度并设计单模块和双模块抓手。通过有限元仿真得到单模块和双模块抓手的气压-扭转角度、气压-末端输出力曲线。利用3D打印模具,通过硅胶浇注成型得到软体驱动器实体。通过模块化的组合后进行抓手的扭转、末端输出力和抓取试验,并将实验数据和仿真数据进行拟合,拟合结果表明仿真和实验结果基本一致。通过样机抓取实验测得单模块抓手和双模块抓手的抓取直径范围分别为1.31cm~3.28cm、1.02cm~6.27cm,抓取最大重量分别为0.3475kg、1.013kg。验证了所提出的气动扭转软体抓手对于棒状物体抓取的有效性和稳定性。
仿生章鱼爪气动螺旋软体驱动器仿真及实验
由弹性材料制成的气动多腔室型软体驱动器可以通过简单的控制产生复杂的运动。提出并设计了0°PN和60°PN两种多腔室仿生章鱼爪软体驱动器。0°PN软体驱动器能够进行二维弯曲运动,60°PN软体驱动器在0°PN的结构基础上更改腔室角度,能够实现三维空间的弯曲和扭转,形成螺旋结构。使用Abaqus软件对软体驱动器进行有限元分析,得到两种软体驱动器的气压-位移变化曲线、气压-末端输出力变化曲线。利用模具浇铸法制作0°PN和60°PN软体驱动器,并开展两种软体驱动器在不同气压下的弯曲试验和末端输出力的测量试验,实验与仿真结果一致,结果表明60°PN软体驱动器的气压承载能力提高1.5倍,末端输出力提高1.8倍。
空间软体螺旋抓手变形预测方法的研究
传统的多指协作软体抓手由于夹持力不足的问题,难以夹取细长物件。提出“Y”字形抓手,该抓手在气压作用下产生螺旋变形,对细长的物体进行缠绕而达到抓取物体的目的。但目前缺乏适合的方法来研究软体抓手的空间螺旋变形。应对这一问题,在分析软体驱动器平面变形原理的基础上,提出投影等效法;其次基于平面抓手与空间抓手在弯曲变形上所存在的几何关系建立了气压与螺旋变形曲线的非线性数学模型;最后开展对空间螺旋抓手的有限元仿真。结果表明,基于投影等效法所建立的数学模型能够较好的预测抓手的螺旋变形曲线,为预测空间软体螺旋抓手变形提供参考。
气撑式软体末端执行器的设计与分析
针对目前多指型软体末端执行器难以平稳夹持不同口径容器的问题,开展了一种能够从内部支撑夹持的气撑式软体末端执行器的设计与分析,提出一种新的夹持方式。首先设计气撑式软体末端执行器的结构,由软体驱动器和连接装置构成;其次基于Yeoh模型、虚功原理和软体驱动器结构建立驱动气压与软体驱动器膨胀变形的非线性数学模型;然后开展软体末端执行器膨胀变形的Abaqus软件仿真及实验,将理论模型和仿真、实验结果进行对比,结果验证理论模型的正确性;最后进行气撑式软体末端执行器的夹持实验,结果表明,所提出的气撑式末端执行器能够很好地抓取不同口径的容器。
一种通用型气动软体夹持器的设计与分析
由柔性材料制成的末端软体夹持器依靠结构本身的弹性变形实现对物体的无损抓持,具有自由度高、适应性强的特性,在非结构化环境中具有广阔的应用前景。目前,多数软体夹持器功能单一,适应性差,难以实现对各种形状、尺寸物体的通用抓取。为解决这一问题,通过分析形状尺寸各异物体对软体夹持器结构及性能的要求,结合现有夹持器的优点,设计出一种中间部位能抓取体积较大目标、尖端部位可精确夹持细微物体的通用型气动软体夹持器。基于Yeoh模型建立夹持器变形角度与压力关系数学模型,使用ABAQUS软件对其进行正压和负压仿真,分析出夹持器的弯曲变形情况,得到其极限气压。通过实物的变形实验,得到仿真结果和实验结果相对误差为9.10%,验证了仿真的有效性和变形角度与压力关系数学模型的准确性。
仿鳐式软体驱动器弯曲预测方法的研究
相对于传统的刚性机器人,由硅胶等柔性材料制造的软体机器人在结构上具有自由度高且能够进行连续形变的特点。目前,多数软体驱动器的气腔形状为等截面形态,而对于变截面软体驱动器的研究却少有涉及。为了解决这一问题,从鳐鱼的运动受到启发,设计了一款气腔截面纵向变换仿鳐式软体驱动器。驱动器限制层设计为不可压缩的薄层,结合应变能密度等理论,提出一种预测驱动器的弯曲变形角度的方法。通过3D打印技术制作模具,浇注模型,制作出仿鳐式软体驱动器。通过理论分析、有限元仿真、实验对比验证其数学模型,绘制仿鳐式软体驱动器在0.02~0.07 MPa气压下的中心线轨迹,分析输入气压与末端输出力的关系,验证了驱动器的理论分析、有限元仿真与实验结果在一定的误差下基本一致。其预测方法表现良好,为进一步研究仿鳐式软体驱动器在空间形变提...
-
共1页/6条