基于多尺度1DCNN的滚动轴承故障诊断
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。
-
共1页/1条