基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断
针对工程实际故障诊断环境下,可用数据稀缺,导致智能诊断模型对轴承健康状态识别精度较低这一问题,提出一种基于二次迁移学习和EfficientNetV2(Two-Step Transfer of Efficient⁃NetV2,TSTE)的滚动轴承故障诊断新方法。首先,将模型在轴承全寿命周期数据集中训练,之后冻结模型浅层权重,将其在多工况轴承数据集中训练,进行第一次迁移学习。其次,通过构造类不平衡数据集,研究实际故障环境下可用数据稀缺对故障诊断性能的影响。然后,基于合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)过采样方法与编辑最近邻(Edited Nearest Neighbors,ENN)欠采样方法对故障数据进行扩充,使类不平衡数据集重构为类平衡数据集。最后,将模型在类平衡数据集中训练,冻结模型底层权重,训练模型深层,进行第二次迁移学习,使模型掌握平衡数据集故障特征。通过多种指标进行实...
基于ADASYN和Swin Transformer的滚动轴承故障诊断研究
针对实际工况下,正常样本丰富、故障样本稀缺的类别不平衡情形,导致基于深度学习的故障诊断模型诊断能力较差这一问题,提出一种基于自适应综合采样方法(ADASYN)和Swin Transformer的故障诊断模型。使用自适应综合采样方法,改善数据分布,解决实际工况中故障样本与正常样本类别不平衡问题;使用Swin Transformer网络模型代替CNN网络,并使用深度迁移学习方法,使Swin Transformer网络模型掌握判别滚动轴承故障所需的浅层权重,深层权重通过反向传播方法训练获得;之后,将模型用于轴承故障测试,并对其进行调试;最后,将模型用于轴承故障实测,检验其实际工况下的诊断能力。实验结果表明:所提模型具有97%的诊断准确率,能够很好地适用于类别不平衡情形下的滚动轴承故障诊断。
基于迁移学习的滚动轴承复合故障诊断研究
针对现有故障诊断方法多是面向单一故障进行研究,对于实际工况下的复合故障缺乏相应的诊断方法,提出一种基于有监督学习的ConvNeXt滚动轴承多工况复合故障诊断模型(TConvNeXt)。通过合成少数类过采样技术将滚动轴承数据集重构为平衡数据集,以提高复合故障样本的利用率;利用迁移学习使TConvNeXt网络模型掌握判别滚动轴承复合故障信息所需的部分权重,通过格拉姆角场将一维信号转换为RGB图像输入模型,训练模型剩余权重;最后将训练后的TConvNeXt网络模型用
基于和的滚动轴承故障诊断研究
针对实际工况下,正常样本丰富、故障样本稀缺的类别不平衡情形,导致基于深度学习的故障诊断模型诊断能力较差这一问题,提出一种基于自适应综合采样方法(ADASYN)和Swin Transformer的故障诊断模型。使用自适应综合采样方法,改善数据分布,解决实际工况中故障样本与正常样本类别不平衡问题;使用Swin Transformer网络模型代替CNN网络,并使用深度迁移学习方法,使Swin Transformer网络模型掌握判别滚动轴承故障所需的浅层权重,深层权重通过反向传播方法训练获得;之后
-
共1页/4条